BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35266704)

  • 1. 3D Printing-Enabled In-Situ Orientation of BaTi
    Liu X; Shang Y; Liu J; Shao Z; Zhang C
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13361-13368. PubMed ID: 35266704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic Liquid-Assisted 3D Printing of Self-Polarized β-PVDF for Flexible Piezoelectric Energy Harvesting.
    Liu X; Shang Y; Zhang J; Zhang C
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14334-14341. PubMed ID: 33729751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospinning of Highly Bi-Oriented Flexible Piezoelectric Nanofibers for Anisotropic-Responsive Intelligent Sensing.
    Shao Z; Zhang X; Liu J; Liu X; Zhang C
    Small Methods; 2023 Sep; 7(9):e2300701. PubMed ID: 37469015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing Architecting β-PVDF Reservoirs for Preferential ZnO Epitaxial Growth Toward Advanced Piezoelectric Energy Harvesting.
    He L; Liu X; Han C; Wang D; Wang Q; Deng X; Zhang C
    Small Methods; 2024 Feb; ():e2301707. PubMed ID: 38343185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of PVDF/BaTiO
    Yang C; Song S; Chen F; Chen N
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41723-41734. PubMed ID: 34431292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Solid-State Shear Milling and FFF 3D-Printing Strategy to Fabricate High-Performance Biomimetic Wearable Fish-Scale PVDF-Based Piezoelectric Energy Harvesters.
    Pei H; Shi S; Chen Y; Xiong Y; Lv Q
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15346-15359. PubMed ID: 35324160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrohydrodynamic Pulling Consolidated High-Efficiency 3D Printing to Architect Unusual Self-Polarized β-PVDF Arrays for Advanced Piezoelectric Sensing.
    He L; Lu J; Han C; Liu X; Liu J; Zhang C
    Small; 2022 Apr; 18(15):e2200114. PubMed ID: 35218161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Customizing Three-Dimensional Elastic Barium Titanate Sponge for Intelligent Piezoelectric Sensing.
    Liu J; Liu J; Zhang X; Liu X; Zhang C
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37908068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precipitation-Printed High-β Phase Poly(vinylidene fluoride) for Energy Harvesting.
    Tu R; Sprague E; Sodano HA
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):58072-58081. PubMed ID: 33320534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosted Mechanical Piezoelectric Energy Harvesting of Polyvinylidene Fluoride/Barium Titanate Composite Porous Foam Based on Three-Dimensional Printing and Foaming Technology.
    Yang C; Chen F; Sun J; Chen N
    ACS Omega; 2021 Nov; 6(45):30769-30778. PubMed ID: 34805705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Radial Piezoelectric Response from Three-Dimensional Electrospun PVDF Micro Wall Structure.
    Luo G; Luo Y; Zhang Q; Wang S; Wang L; Li Z; Zhao L; Teh KS; Jiang Z
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32197445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Powered Viscosity and Pressure Sensing in Microfluidic Systems Based on the Piezoelectric Energy Harvesting of Flowing Droplets.
    Wang Z; Tan L; Pan X; Liu G; He Y; Jin W; Li M; Hu Y; Gu H
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28586-28595. PubMed ID: 28783301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organo-Lead Halide Perovskite Induced Electroactive β-Phase in Porous PVDF Films: An Excellent Material for Photoactive Piezoelectric Energy Harvester and Photodetector.
    Sultana A; Sadhukhan P; Alam MM; Das S; Middya TR; Mandal D
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4121-4130. PubMed ID: 29308647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Energy Harvester Based on Poly(vinylidene fluoride) Composite Films.
    Yoon S; Shin DJ; Ko YH; Cho KH; Koh JH
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1289-1294. PubMed ID: 30469177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in Piezoelectric Nanogenerators Based on PVDF Composite Films.
    Wang Y; Zhu L; Du C
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally Stable Poly(vinylidene fluoride) for High-Performance Printable Piezoelectric Devices.
    Lin J; Malakooti MH; Sodano HA
    ACS Appl Mater Interfaces; 2020 May; 12(19):21871-21882. PubMed ID: 32316731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Humidity Sustainable Hydrophobic Poly(vinylidene fluoride)-Carbon Nanotubes Foam Based Piezoelectric Nanogenerator.
    Badatya S; Bharti DK; Sathish N; Srivastava AK; Gupta MK
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27245-27254. PubMed ID: 34096257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Self-Matched" Tribo/Piezoelectric Nanogenerators Using Vapor-Induced Phase-Separated Poly(vinylidene fluoride) and Recombinant Spider Silk.
    Huang T; Zhang Y; He P; Wang G; Xia X; Ding G; Tao TH
    Adv Mater; 2020 Mar; 32(10):e1907336. PubMed ID: 31984557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PVDF-Based Composition-Gradient Multilayered Nanocomposites for Flexible High-Performance Piezoelectric Nanogenerators.
    Yang L; Zhao Q; Chen K; Ma Y; Wu Y; Ji H; Qiu J
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11045-11054. PubMed ID: 32069023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile preparation of high loading filled PVDF/BaTiO
    Song S; Li Y; Wang Q; Zhang C
    RSC Adv; 2021 Nov; 11(60):37923-37931. PubMed ID: 35498085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.