These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35266715)
21. 2,3-diaminophenazine as a high-rate rechargeable aqueous zinc-ion batteries cathode. Liang J; Tang M; Cheng L; Zhu Q; Ji R; Liu X; Zhang Q; Wang H; Liu Z J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1262-1268. PubMed ID: 34571310 [TBL] [Abstract][Full Text] [Related]
22. Efficient capture and conversion of polysulfides by zinc protoporphyrin framework-embedded triple-layer nanofiber separator for advanced Li-S batteries. Ren Z; Li J; Gong Y; Li X; Liang J; Li Y; He C; Zhang Q; Ren X J Colloid Interface Sci; 2022 Mar; 609():43-53. PubMed ID: 34890950 [TBL] [Abstract][Full Text] [Related]
23. A Stimulus-Responsive Zinc-Iodine Battery with Smart Overcharge Self-Protection Function. Wang F; Tseng J; Liu Z; Zhang P; Wang G; Chen G; Wu W; Yu M; Wu Y; Feng X Adv Mater; 2020 Apr; 32(16):e2000287. PubMed ID: 32134521 [TBL] [Abstract][Full Text] [Related]
24. A Universal Polyiodide Regulation Using Quaternization Engineering toward High Value-Added and Ultra-Stable Zinc-Iodine Batteries. Zhang L; Zhang M; Guo H; Tian Z; Ge L; He G; Huang J; Wang J; Liu T; Parkin IP; Lai F Adv Sci (Weinh); 2022 May; 9(13):e2105598. PubMed ID: 35253402 [TBL] [Abstract][Full Text] [Related]
25. Fully Conjugated Phthalocyanine Copper Metal-Organic Frameworks for Sodium-Iodine Batteries with Long-Time-Cycling Durability. Wang F; Liu Z; Yang C; Zhong H; Nam G; Zhang P; Dong R; Wu Y; Cho J; Zhang J; Feng X Adv Mater; 2020 Jan; 32(4):e1905361. PubMed ID: 31815328 [TBL] [Abstract][Full Text] [Related]
26. Thermodynamically and Dynamically Boosted Electrocatalytic Iodine Conversion with Hydroxyl Groups for High-Efficiency Zinc-Iodine Batteries. Zhou L; Li X; Chen H; Zheng H; Zhang T; Ning J; Wang H; Hu Y ACS Appl Mater Interfaces; 2024 Oct; 16(40):53881-53893. PubMed ID: 39340424 [TBL] [Abstract][Full Text] [Related]
27. Six-Electron-Redox Iodine Electrodes for High-Energy Aqueous Batteries. Bi S; Wang H; Zhang Y; Yang M; Li Q; Tian J; Niu Z Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312982. PubMed ID: 37861096 [TBL] [Abstract][Full Text] [Related]
28. Effect of an Iodine Film on Charge-Transfer Resistance during the Electro-Oxidation of Iodide in Redox Flow Batteries. Jang WJ; Cha JS; Kim H; Yang JH ACS Appl Mater Interfaces; 2021 Feb; 13(5):6385-6393. PubMed ID: 33502159 [TBL] [Abstract][Full Text] [Related]
29. Prototypical Study of Double-Layered Cathodes for Aqueous Rechargeable Static Zn-I Lin D; Rao D; Chiovoloni S; Wang S; Lu JQ; Li Y Nano Lett; 2021 May; 21(9):4129-4135. PubMed ID: 33939439 [TBL] [Abstract][Full Text] [Related]
30. A four-electron Zn-I Zou Y; Liu T; Du Q; Li Y; Yi H; Zhou X; Li Z; Gao L; Zhang L; Liang X Nat Commun; 2021 Jan; 12(1):170. PubMed ID: 33419999 [TBL] [Abstract][Full Text] [Related]
31. All-Round Ionic Liquids for Shuttle-Free Zinc-Iodine Battery. Xiao T; Yang JL; Zhang B; Wu J; Li J; Mai W; Fan HJ Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202318470. PubMed ID: 38179860 [TBL] [Abstract][Full Text] [Related]
32. Long-Lasting Zinc-Iodine Batteries with Ultrahigh Areal Capacity and Boosted Rate Capability Enabled by Nickel Single-Atom Electrocatalysts. Ma L; Zhu G; Wang Z; Zhu A; Wu K; Peng B; Xu J; Wang D; Jin Z Nano Lett; 2023 Jun; 23(11):5272-5280. PubMed ID: 37260235 [TBL] [Abstract][Full Text] [Related]
33. Suppressing the Shuttle Effect of Aqueous Zinc-Iodine Batteries: Progress and Prospects. Li M; Wu J; Li H; Wang Y Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612159 [TBL] [Abstract][Full Text] [Related]
34. Preventing Dissolution of Cathode Active Materials by Ion-anchoring Zeolite-based Separators for Durable Aqueous Zinc Batteries. Qin Y; Wang X Angew Chem Int Ed Engl; 2024 Jan; 63(2):e202315464. PubMed ID: 38032352 [TBL] [Abstract][Full Text] [Related]
35. Polyaniline functionalized separator as synergistic medium for aqueous zinc-ion batteries. Zhao N; Zhang Y; Zhang Z; Han C; Liang Y; Li J; Wang X; Dai L; Wang L; He Z J Colloid Interface Sci; 2023 Jul; 642():421-429. PubMed ID: 37023514 [TBL] [Abstract][Full Text] [Related]
36. A Universal Coulombic Efficiency Compensation Strategy for Zinc-Based Flow Batteries. Huang S; Li M; Song Y; Xi S; Wu C; Ang ZWJ; Wang Q Adv Mater; 2024 Aug; 36(33):e2406366. PubMed ID: 38870394 [TBL] [Abstract][Full Text] [Related]
37. Facilitating the Electrochemical Oxidation of ZnS through Iodide Catalysis for Aqueous Zinc-Sulfur Batteries. Hei P; Sai Y; Liu C; Li W; Wang J; Sun X; Song Y; Liu XX Angew Chem Int Ed Engl; 2024 Feb; 63(9):e202316082. PubMed ID: 38196064 [TBL] [Abstract][Full Text] [Related]
38. Doping Engineering of M-N-C Electrocatalyst Based Membrane-Electrode Assembly for High-Performance Aqueous Polysulfides Redox Flow Batteries. Chen B; Huang H; Lin J; Zhu K; Yang L; Wang X; Chen J Adv Sci (Weinh); 2023 Jun; 10(16):e2206949. PubMed ID: 37066747 [TBL] [Abstract][Full Text] [Related]
39. High-Rate Aqueous Aluminum-Ion Batteries Enabled by Confined Iodine Conversion Chemistry. Yang S; Li C; Lv H; Guo X; Wang Y; Han C; Zhi C; Li H Small Methods; 2021 Oct; 5(10):e2100611. PubMed ID: 34927954 [TBL] [Abstract][Full Text] [Related]
40. Redox-active zinc thiolates for low-cost aqueous rechargeable Zn-ion batteries. Tuttle MR; Walter C; Brackman E; Moore CE; Espe M; Rasik C; Adams P; Zhang S Chem Sci; 2021 Dec; 12(46):15253-15262. PubMed ID: 34976345 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]