BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35266808)

  • 21. Pitch Canker Caused by Fusarium circinatum Identified on Spruce Pine in Alabama.
    Enebak SA; Carey WA
    Plant Dis; 2003 Apr; 87(4):449. PubMed ID: 30831855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection and quantification of airborne conidia of Fusarium circinatum, the causal agent of pine pitch canker, from two California sites by using a real-time PCR approach combined with a simple spore trapping method.
    Schweigkofler W; O'Donnell K; Garbelotto M
    Appl Environ Microbiol; 2004 Jun; 70(6):3512-20. PubMed ID: 15184151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Effect of Resin and Monoterpenes on Spore Germination and Growth in Fusarium circinatum.
    Slinski SL; Zakharov F; Gordon TR
    Phytopathology; 2015 Jan; 105(1):119-25. PubMed ID: 25163010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. First Report of Pitch Canker on Pines Caused by Fusarium circinatum in Portugal.
    Bragança H; Diogo E; Moniz F; Amaro P
    Plant Dis; 2009 Oct; 93(10):1079. PubMed ID: 30754353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multispecies comparison of host responses to Fusarium circinatum challenge in tropical pines show consistency in resistance mechanisms.
    Visser EA; Kampmann TP; Wegrzyn JL; Naidoo S
    Plant Cell Environ; 2023 May; 46(5):1705-1725. PubMed ID: 36541367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pitch canker disease of pines.
    Gordon TR
    Phytopathology; 2006 Jun; 96(6):657-9. PubMed ID: 18943185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A LAMP Assay for Rapid Detection of the Pitch Canker Pathogen
    Meinecke CD; Vos L; Yilmaz N; Steenkamp ET; Wingfield MJ; Wingfield BD; Villari C
    Plant Dis; 2023 Oct; 107(10):2916-2923. PubMed ID: 36867583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal physiological response of pine to Fusarium circinatum infection is dependent on host susceptibility level: the role of ABA catabolism.
    Amaral J; Correia B; Escandón M; Jesus C; Serôdio J; Valledor L; Hancock RD; Dinis LT; Gomez-Cadenas A; Alves A; Pinto G
    Tree Physiol; 2021 May; 41(5):801-816. PubMed ID: 33150950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compost Tea Reduces the Susceptibility of
    Otero M; Salcedo I; Txarterina K; González-Murua C; Duñabeitia MK
    Phytopathology; 2020 Apr; 110(4):813-821. PubMed ID: 31880986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative proteomics of Pinus-Fusarium circinatum interactions reveal metabolic clues to biotic stress resistance.
    Amaral J; Lamelas L; Valledor L; Castillejo MÁ; Alves A; Pinto G
    Physiol Plant; 2021 Dec; 173(4):2142-2154. PubMed ID: 34537969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined de novo and genome guided assembly and annotation of the Pinus patula juvenile shoot transcriptome.
    Visser EA; Wegrzyn JL; Steenkmap ET; Myburg AA; Naidoo S
    BMC Genomics; 2015 Dec; 16():1057. PubMed ID: 26652261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deciphering the effect of FUB1 disruption on fusaric acid production and pathogenicity in Fusarium circinatum.
    Phasha MM; Wingfield BD; Wingfield MJ; Coetzee MPA; Hammerbacher A; Steenkamp ET
    Fungal Biol; 2021 Dec; 125(12):1036-1047. PubMed ID: 34776231
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recombinase Polymerase Amplification-Lateral Flow Dipstick Assay for Rapid Detection of
    Xu J; Yang X; Wu C; Chen Z; Dai T
    Plant Dis; 2023 Apr; 107(4):1067-1074. PubMed ID: 36089688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Putative Effector Genes Distinguish Two Pathogenicity Groups of
    Batson AM; Fokkens L; Rep M; du Toit LJ
    Mol Plant Microbe Interact; 2021 Feb; 34(2):141-156. PubMed ID: 33103963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide identification and characterization of Fusarium circinatum-responsive lncRNAs in Pinus radiata.
    Zamora-Ballesteros C; Martín-García J; Suárez-Vega A; Diez JJ
    BMC Genomics; 2022 Mar; 23(1):194. PubMed ID: 35264109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. First Report of Grass Species (Poaceae) as Naturally Occurring Hosts of the Pine Pathogen Gibberella circinata.
    Swett CL; Gordon TR
    Plant Dis; 2012 Jun; 96(6):908. PubMed ID: 30727378
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporating exposure to pitch canker disease to support management decisions of Pinus pinaster Ait. in the face of climate change.
    Serra-Varela MJ; Alía R; Pórtoles J; Gonzalo J; Soliño M; Grivet D; Raposo R
    PLoS One; 2017; 12(2):e0171549. PubMed ID: 28192454
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning and sequence analysis of the endopolygalacturonase gene from the pitch canker fungus, Fusarium circinatum.
    Chimwamurombe PM; Wingfield BD; Botha AM; Wingfield MJ
    Curr Microbiol; 2001 May; 42(5):350-2. PubMed ID: 11400056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial relationships between nitrogen status and pitch canker disease in slash pine planted adjacent to a poultry operation.
    Lopez-Zamora I; Bliss C; Jokela EJ; Comerford NB; Grunwald S; Barnard E; Vasquez GM
    Environ Pollut; 2007 May; 147(1):101-11. PubMed ID: 17049465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Association mapping of quantitative disease resistance in a natural population of loblolly pine (Pinus taeda L.).
    Quesada T; Gopal V; Cumbie WP; Eckert AJ; Wegrzyn JL; Neale DB; Goldfarb B; Huber DA; Casella G; Davis JM
    Genetics; 2010 Oct; 186(2):677-86. PubMed ID: 20628037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.