These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment. Granata V; Fusco R; De Muzio F; Brunese MC; Setola SV; Ottaiano A; Cardone C; Avallone A; Patrone R; Pradella S; Miele V; Tatangelo F; Cutolo C; Maggialetti N; Caruso D; Izzo F; Petrillo A Radiol Med; 2023 Nov; 128(11):1310-1332. PubMed ID: 37697033 [TBL] [Abstract][Full Text] [Related]
7. Radiomics and machine learning analysis based on magnetic resonance imaging in the assessment of liver mucinous colorectal metastases. Granata V; Fusco R; De Muzio F; Cutolo C; Setola SV; Dell'Aversana F; Grassi F; Belli A; Silvestro L; Ottaiano A; Nasti G; Avallone A; Flammia F; Miele V; Tatangelo F; Izzo F; Petrillo A Radiol Med; 2022 Jul; 127(7):763-772. PubMed ID: 35653011 [TBL] [Abstract][Full Text] [Related]
8. Radiomics and Machine Learning Analysis Based on Magnetic Resonance Imaging in the Assessment of Colorectal Liver Metastases Growth Pattern. Granata V; Fusco R; De Muzio F; Cutolo C; Mattace Raso M; Gabelloni M; Avallone A; Ottaiano A; Tatangelo F; Brunese MC; Miele V; Izzo F; Petrillo A Diagnostics (Basel); 2022 Apr; 12(5):. PubMed ID: 35626271 [TBL] [Abstract][Full Text] [Related]
9. Machine learning and radiomics analysis by computed tomography in colorectal liver metastases patients for RAS mutational status prediction. Granata V; Fusco R; Setola SV; Brunese MC; Di Mauro A; Avallone A; Ottaiano A; Normanno N; Petrillo A; Izzo F Radiol Med; 2024 Jul; 129(7):957-966. PubMed ID: 38761342 [TBL] [Abstract][Full Text] [Related]
10. Machine learning-based radiomics analysis in predicting RAS mutational status using magnetic resonance imaging. Granata V; Fusco R; Brunese MC; Di Mauro A; Avallone A; Ottaiano A; Izzo F; Normanno N; Petrillo A Radiol Med; 2024 Mar; 129(3):420-428. PubMed ID: 38308061 [TBL] [Abstract][Full Text] [Related]
11. Radiomics and Artificial Intelligence Analysis with Textural Metrics Extracted by Contrast-Enhanced Mammography in the Breast Lesions Classification. Fusco R; Piccirillo A; Sansone M; Granata V; Rubulotta MR; Petrosino T; Barretta ML; Vallone P; Di Giacomo R; Esposito E; Di Bonito M; Petrillo A Diagnostics (Basel); 2021 Apr; 11(5):. PubMed ID: 33946333 [TBL] [Abstract][Full Text] [Related]
12. Value of CT-Based Radiomics in Predicating the Efficacy of Anti-HER2 Therapy for Patients With Liver Metastases From Breast Cancer. He M; Hu Y; Wang D; Sun M; Li H; Yan P; Meng Y; Zhang R; Li L; Yu D; Wang X Front Oncol; 2022; 12():852809. PubMed ID: 35463302 [TBL] [Abstract][Full Text] [Related]
13. Prediction of treatment response to transarterial radioembolization of liver metastases: Radiomics analysis of pre-treatment cone-beam CT: A proof of concept study. Kobe A; Zgraggen J; Messmer F; Puippe G; Sartoretti T; Alkadhi H; Pfammatter T; Mannil M Eur J Radiol Open; 2021; 8():100375. PubMed ID: 34485629 [TBL] [Abstract][Full Text] [Related]
14. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study. Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008 [TBL] [Abstract][Full Text] [Related]
15. [Value of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinoma]. Yu YX; Hu CH; Wang XM; Fan YF; Hu MJ; Shi C; Hu S; Zhu M; Zhang Y Zhonghua Yi Xue Za Zhi; 2021 May; 101(17):1239-1245. PubMed ID: 34865392 [No Abstract] [Full Text] [Related]
16. Radiomics-Derived Data by Contrast Enhanced Magnetic Resonance in RAS Mutations Detection in Colorectal Liver Metastases. Granata V; Fusco R; Avallone A; De Stefano A; Ottaiano A; Sbordone C; Brunese L; Izzo F; Petrillo A Cancers (Basel); 2021 Jan; 13(3):. PubMed ID: 33504085 [No Abstract] [Full Text] [Related]
17. Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases. Taghavi M; Trebeschi S; Simões R; Meek DB; Beckers RCJ; Lambregts DMJ; Verhoef C; Houwers JB; van der Heide UA; Beets-Tan RGH; Maas M Abdom Radiol (NY); 2021 Jan; 46(1):249-256. PubMed ID: 32583138 [TBL] [Abstract][Full Text] [Related]
18. Peri-lesion regions in differentiating suspicious breast calcification-only lesions specifically on contrast enhanced mammography. Cao K; Gao F; Long R; Zhang FD; Huang CC; Cao M; Yu YZ; Sun YS J Xray Sci Technol; 2024; 32(3):583-596. PubMed ID: 38306089 [TBL] [Abstract][Full Text] [Related]
19. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics. Mao B; Ma J; Duan S; Xia Y; Tao Y; Zhang L Eur Radiol; 2021 Jul; 31(7):4576-4586. PubMed ID: 33447862 [TBL] [Abstract][Full Text] [Related]
20. Prediction of Breast Cancer Histological Outcome by Radiomics and Artificial Intelligence Analysis in Contrast-Enhanced Mammography. Petrillo A; Fusco R; Di Bernardo E; Petrosino T; Barretta ML; Porto A; Granata V; Di Bonito M; Fanizzi A; Massafra R; Petruzzellis N; Arezzo F; Boldrini L; La Forgia D Cancers (Basel); 2022 Apr; 14(9):. PubMed ID: 35565261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]