These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35267695)

  • 1. Experimental and Numerical Evaluations of Localized Stress Relaxation for Vulcanized Rubber.
    Sukcharoen K; Noraphaiphipaksa N; Hasap A; Kanchanomai C
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-Dependent Testing Evaluation and Modeling for Rubber Stopper Seal Performance.
    Zeng Q; Zhao X
    PDA J Pharm Sci Technol; 2018; 72(2):134-148. PubMed ID: 29158288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-Dependence of Rubber Hyperelasticity Based on the Eight-Chain Model.
    Fu X; Wang Z; Ma L; Zou Z; Zhang Q; Guan Y
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32316485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Large Deformation and Velocity Impacts on the Mechanical Behavior of Filled Rubber: Microstructure-Based Constitutive Modeling and Mechanical Testing.
    Wei W; Yuan Y; Gao X
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33050587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-Strain Response of Cylindrical Rubber Fender under Monotonic and Cyclic Compression.
    Wu CC; Chiou YC
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30654533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ability of Constitutive Models to Characterize the Temperature Dependence of Rubber Hyperelasticity and to Predict the Stress-Strain Behavior of Filled Rubber under Different Defor Mation States.
    Fu X; Wang Z; Ma L
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33503897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient Effects of Applying and Removing Strain on the Mechanical Behavior of Rubber.
    Gkouti E; Yenigun B; Czekanski A
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 33003563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature Dependence of Rubber Hyper-Elasticity Based on Different Constitutive Models and Their Prediction Ability.
    Yao X; Wang Z; Ma L; Miao Z; Su M; Han X; Yang J
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the Microstructures on Vulcanized Rubber Frictions.
    Nosaka M; Tsujioka K; Matsuo Y; Okamatsu T; Arita T; Shimomura M; Hirai Y
    Langmuir; 2021 Jun; 37(21):6459-6467. PubMed ID: 34003659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyper-Pseudo-Viscoelastic Model and Parameter Identification for Describing Tensile Recovery Stress-Strain Responses of Rubber Components in TBR.
    Pan G; Chen M; Wang Y; Zhang J; Liu L; Zhang L; Li F
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Uniaxial Stress-Strain Relationship of Hyperelastic Material Models of Rubber Cracks in the Platens of Papermaking Machines Based on Nonlinear Strain and Stress Measurements with the Finite Element Method.
    Nguyen HD; Huang SC
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stiffening by fiber reinforcement in soft materials: a hyperelastic theory at large strains and its application.
    Ciarletta P; Izzo I; Micera S; Tendick F
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1359-68. PubMed ID: 21783146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalization of exponential based hyperelastic to hyper-viscoelastic model for investigation of mechanical behavior of rate dependent materials.
    Narooei K; Arman M
    J Mech Behav Biomed Mater; 2018 Mar; 79():104-113. PubMed ID: 29289929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human liver finite element model validation using compressive and tensile experimental data - biomed 2013.
    Davis ML; Moreno DP; Vavalle NA; Gayzik FS
    Biomed Sci Instrum; 2013; 49():289-96. PubMed ID: 23686212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Nanostress Visualization Method to Reveal the Micromechanical Mechanism of Nanocomposites by Atomic Force Microscopy.
    Liang X; Kojima T; Ito M; Amino N; Liu H; Koishi M; Nakajima K
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12414-12422. PubMed ID: 36852783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation of a relaxation test designed to fit a quasi-linear viscoelastic model for temporomandibular joint discs.
    Commisso MS; Martínez-Reina J; Mayo J; Domínguez J
    Proc Inst Mech Eng H; 2013 Feb; 227(2):190-9. PubMed ID: 23513990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of a constant load to generate equivalent viscoelastic strain in finite element analysis of cemented prosthetic joints subjected to cyclic loading.
    Lu Z; McKellop HA
    Proc Inst Mech Eng H; 2011 Aug; 225(8):809-20. PubMed ID: 21922957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Visco-Hyperelastic Constitutive Model to Characterize the Stress-Softening Behavior of Ethylene Propylene Diene Monomer Rubber.
    Liu X; Liu C; Zhu D; Lin J
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-relaxation response of human menisci under confined compression conditions.
    Martin Seitz A; Galbusera F; Krais C; Ignatius A; Dürselen L
    J Mech Behav Biomed Mater; 2013 Oct; 26():68-80. PubMed ID: 23811278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A micromechanical procedure for viscoelastic characterization of the axons and ECM of the brainstem.
    Javid S; Rezaei A; Karami G
    J Mech Behav Biomed Mater; 2014 Feb; 30():290-9. PubMed ID: 24361933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.