These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35267695)

  • 21. The biodegradative effect of Tenebrio molitor Linnaeus larvae on vulcanized SBR and tire crumb.
    Aboelkheir MG; Visconte LY; Oliveira GE; Toledo Filho RD; Souza FG
    Sci Total Environ; 2019 Feb; 649():1075-1082. PubMed ID: 30308879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental Study of Rubberized Concrete Stress-Strain Behavior for Improving Constitutive Models.
    Strukar K; Kalman Šipoš T; Dokšanović T; Rodrigues H
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-Temperature Rheological Properties and Microscopic Characterization of Asphalt Rubbers Containing Heterogeneous Crumb Rubbers.
    Chang M; Zhang Y; Pei J; Zhang J; Wang M; Ha F
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32948066
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A nonlinear viscoelastic finite element model of polyethylene.
    Chen PC; Colwell CW; D'Lima DD
    Mol Cell Biomech; 2011 Jun; 8(2):135-48. PubMed ID: 21608414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compressive mechanical characterization of non-human primate spinal cord white matter.
    Jannesar S; Allen M; Mills S; Gibbons A; Bresnahan JC; Salegio EA; Sparrey CJ
    Acta Biomater; 2018 Jul; 74():260-269. PubMed ID: 29729417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials.
    Prabhu R; Whittington WR; Patnaik SS; Mao Y; Begonia MT; Williams LN; Liao J; Horstemeyer MF
    J Vis Exp; 2015 May; (99):e51545. PubMed ID: 26067742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis.
    Ahanchian N; Nester CJ; Howard D; Ren L; Parker D
    Med Eng Phys; 2017 Feb; 40():11-19. PubMed ID: 27913178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of Hyperelastic Material Parameters of Elastomers by Reverse Engineering Approach.
    Yenigun B; Gkouti E; Barbaraci G; Czekanski A
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling of Hyper-Viscoelastic Properties of High-Damping Rubber Materials during the Cyclic Tension and Compression Process in the Vertical Direction.
    Chen B; Dai J; Shao Z
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical and Experimental Investigation of Oil Palm Shell Reinforced Rubber Composites.
    Anandan S; Lim CY; Tan BT; Anggraini V; Raghunandan ME
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32028726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding.
    Blum MM; Ovaert TC
    J Mech Behav Biomed Mater; 2012 Oct; 14():248-58. PubMed ID: 22947923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stress-Relaxation and Cyclic Behavior of Human Carotid Plaque Tissue.
    Paritala PK; Yarlagadda PKDV; Kansky R; Wang J; Mendieta JB; Gu Y; McGahan T; Lloyd T; Li Z
    Front Bioeng Biotechnol; 2020; 8():60. PubMed ID: 32117939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uniaxial Extension and Compression in Stress-Strain Relations of Rubber.
    Wood LA
    J Res Natl Bur Stand (1977); 1977; 82(1):57-63. PubMed ID: 34565954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental Investigation and Constitutive Modeling of the Uncured Rubber Compound Based on the DMA Strain Scanning Method.
    Li Y; Sun X; Zhang S; Miao Y; Han S
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33207716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Hyper-Elastic Creep Approach and Characterization Analysis for Rubber Vibration Systems.
    Leng D; Xu K; Qin L; Ma Y; Liu G
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31167381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical characterization of brain tissue in simple shear at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2013 Dec; 28():71-85. PubMed ID: 23973615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests.
    Wu JZ; Herzog W
    Ann Biomed Eng; 2000 Mar; 28(3):318-30. PubMed ID: 10784096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMR relaxation dispersion of vulcanized natural rubber.
    Kariyo S; Stapf S
    Solid State Nucl Magn Reson; 2004 Jan; 25(1-3):64-71. PubMed ID: 14698387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.