These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35267746)

  • 1. Urbach Rule in the Red-Shifted Absorption Edge of PET Films Irradiated with Swift Heavy Ions.
    Tuleushev AZ; Harrison FE; Kozlovskiy AL; Zdorovets MV
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Luminescence of PET Films after Swift Heavy Ion Irradiation.
    Tuleushev AZ; Harrison FE; Kozlovskiy AL; Zdorovets MV
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the Irradiation Exposure of PET Film with Swift Heavy Ions Using the Interference-Free Transmission UV-Vis Transmission Spectra.
    Tuleushev AZ; Harrison FE; Kozlovskiy AL; Zdorovets MV
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33499294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of fluence dependent 120 MeV Ag swift heavy ion irradiation on the changes in structural, electronic, and optical properties of AgInSe
    Panda R; Khan SA; Singh UP; Naik R; Mishra NC
    RSC Adv; 2021 Jul; 11(42):26218-26227. PubMed ID: 35479461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation.
    Sorieul S; Kerbiriou X; Costantini JM; Gosmain L; Calas G; Trautmann C
    J Phys Condens Matter; 2012 Mar; 24(12):125801. PubMed ID: 22369869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification/annealing of graphene with 100-MeV Ag ion irradiation.
    Kumar S; Tripathi A; Singh F; Khan SA; Baranwal V; Avasthi DK
    Nanoscale Res Lett; 2014; 9(1):126. PubMed ID: 24636520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of Swift Ion Tracks in Suspended Local Diamondized Few-Layer Graphene.
    Nebogatikova NA; Antonova IV; Gutakovskii AK; Smovzh DV; Volodin VA; Sorokin PB
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signature of strong localization and crossover conduction processes in doped ZnO thin films: synergetic effect of doping fraction and dense electronic excitations.
    Gupta H; Singh J; Umapathy GR; Soni V; Ojha S; Kar S; Singh F
    J Phys Condens Matter; 2021 Jun; 33(31):. PubMed ID: 34132205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bond-specific fragmentation of oligopeptides via electronic stopping of swift heavy ions in molecular films.
    Schneider P; Keller P; Schubert I; Bender M; Trautmann C; Dürr M
    Sci Rep; 2022 Oct; 12(1):17975. PubMed ID: 36289262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical and dielectric properties of ion beam irradiated Ag/polymethyl methacrylate nanocomposites.
    Gavade C; Singh NL; Khanna PK
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5911-6. PubMed ID: 25936026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An attempt to apply the inelastic thermal spike model to surface modifications of CaF
    Dufour C; Khomrenkov V; Wang YY; Wang ZG; Aumayr F; Toulemonde M
    J Phys Condens Matter; 2017 Mar; 29(9):095001. PubMed ID: 28129201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Latent track formation and recrystallization in swift heavy ion irradiation.
    Attariani H
    Phys Chem Chem Phys; 2022 Oct; 24(39):24480-24486. PubMed ID: 36193666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localized thermal spike driven morphology and electronic structure transformation in swift heavy ion irradiated TiO
    Dey S; Chakravorty A; Mishra SB; Khatun N; Hazra A; Nanda BRK; Sudakar C; Kabiraj D; Roy SC
    Nanoscale Adv; 2021 Dec; 4(1):241-249. PubMed ID: 36132944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of nanocrystalline tin oxide thin film by swift heavy ion irradiation.
    Mohanty T; Satyam PV; Kanjilal D
    J Nanosci Nanotechnol; 2006 Aug; 6(8):2554-9. PubMed ID: 17037871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of cobalt nanoparticles on Si (100) by swift heavy ion irradiation.
    Attri A; Kumar A; Verma S; Ojha S; Asokan K; Nair L
    Nanoscale Res Lett; 2013 Oct; 8(1):433. PubMed ID: 24138985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of TiO2 nanorings due to rapid thermal annealing of swift heavy ion irradiated films.
    Thakurdesai M; Sulania I; Narsale AM; Kanjilal D; Bhattacharyya V
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4387-94. PubMed ID: 19049030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle formation by swift heavy ion irradiation of indium oxide thin film.
    Kumar M; Ganesan PG; Singh VN; Mehta BR; Singh JP
    Nanotechnology; 2008 Apr; 19(17):175606. PubMed ID: 21825679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LET, track structure and models. A review.
    Kraft G; Krämer M; Scholz M
    Radiat Environ Biophys; 1992; 31(3):161-80. PubMed ID: 1502326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hillocks created for amorphizable and non-amorphizable ceramics irradiated with swift heavy ions: TEM study.
    Ishikawa N; Taguchi T; Okubo N
    Nanotechnology; 2017 Nov; 28(44):445708. PubMed ID: 29016363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparative Study of the Semiconductor Behavior of Organic Thin Films: TCNQ-Doped Cobalt Phthalocyanine and Cobalt Octaethylporphyrin.
    Sánchez-Vergara ME; Rios C; Jiménez-Sandoval O; Salcedo R
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33316924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.