BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 35267829)

  • 1. Classification and Characterization of Tire-Road Wear Particles in Road Dust by Density.
    Jung U; Choi SS
    Polymers (Basel); 2022 Mar; 14(5):. PubMed ID: 35267829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and Characterization of Model Tire-Road Wear Particles.
    Son CE; Choi SS
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of tire-road wear particles (TRWPs) and road pavement wear particles (RPWPs) generated through a novel tire abrasion simulator based on real road pavement conditions.
    Bae SH; Chae E; Park YS; Lee SW; Yun JH; Choi SS
    Sci Total Environ; 2024 Sep; 944():173948. PubMed ID: 38880134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of tire and road wear particles from road runoff indicates highly dynamic particle properties.
    Klöckner P; Seiwert B; Eisentraut P; Braun U; Reemtsma T; Wagner S
    Water Res; 2020 Oct; 185():116262. PubMed ID: 32798890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Types and concentrations of tire wear particles (TWPs) in road dust generated in slow lanes.
    Chae E; Jung U; Choi SS
    Environ Pollut; 2024 Apr; 346():123670. PubMed ID: 38423271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive characterization of tire and road wear particles in highway tunnel road dust by use of size and density fractionation.
    Klöckner P; Seiwert B; Weyrauch S; Escher BI; Reemtsma T; Wagner S
    Chemosphere; 2021 Sep; 279():130530. PubMed ID: 33878695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of treadwear grade on the generation of tire PM emissions in laboratory and real-world driving conditions.
    Woo SH; Jang H; Mun SH; Lim Y; Lee S
    Sci Total Environ; 2022 Sep; 838(Pt 4):156548. PubMed ID: 35688251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and quantification of tire and road wear particles in road dust samples: Bonded-sulfur as a novel marker.
    Ren Y; Li W; Jia Q; Zhao Y; Qu C; Liu L; Liu J; Wu C
    J Hazard Mater; 2024 Mar; 465():133089. PubMed ID: 38016316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of tire tread wear particle in road dust through pyrolytic technique.
    Chae E; Choi SS
    Heliyon; 2023 Jul; 9(7):e17796. PubMed ID: 37483690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tire and road wear particles in the aquatic organisms - A review of source, properties, exposure routes, and biological effects.
    Zhao T; Zhang Y; Song Q; Meng Q; Zhou S; Cong J
    Aquat Toxicol; 2024 Jun; 273():107010. PubMed ID: 38917645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chemical composition and sources of road dust, and of tire and road wear particles-A review.
    Wagner S; Funk CW; Müller K; Raithel DJ
    Sci Total Environ; 2024 May; 926():171694. PubMed ID: 38485005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of tire wear particles in road dust based on synthetic/natural rubber ratio using pyrolysis-gas chromatography-mass spectrometry across diverse tire types.
    Jeong S; Ryu H; Shin H; Lee MG; Hong J; Kim H; Kwon JT; Lee J; Kim Y
    Sci Total Environ; 2024 Sep; 942():173796. PubMed ID: 38851327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of tire-road wear particles on the adsorption of tetracycline by aquatic sediments.
    Fan X; Cao B; Wang S; Li H; Zhu M; Sha H; Yang Y
    Environ Sci Pollut Res Int; 2024 Apr; 31(20):29232-29245. PubMed ID: 38573573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in Abundance Ratio of Isoprene and Dipentene Produced from Wear Particles Composed of Natural Rubber by Pyrolysis Depending on the Particle Size and Thermal Aging.
    Jung U; Choi SS
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical mapping of tire and road wear particles for single particle analysis.
    Kovochich M; Liong M; Parker JA; Oh SC; Lee JP; Xi L; Kreider ML; Unice KM
    Sci Total Environ; 2021 Feb; 757():144085. PubMed ID: 33333431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of polymeric components and tire wear particle contents in particulate matter collected at bus stop and college campus.
    Chae E; Choi SS
    Heliyon; 2023 Jun; 9(6):e16558. PubMed ID: 37251472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging of tire and road wear particles in terrestrial and freshwater environments - A review on processes, testing, analysis and impact.
    Wagner S; Klöckner P; Reemtsma T
    Chemosphere; 2022 Feb; 288(Pt 2):132467. PubMed ID: 34624341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tire and road wear particles in road environment - Quantification and assessment of particle dynamics by Zn determination after density separation.
    Klöckner P; Reemtsma T; Eisentraut P; Braun U; Ruhl AS; Wagner S
    Chemosphere; 2019 May; 222():714-721. PubMed ID: 30738314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of tire tread wear particles in microparticles produced on the road using oleamide as a novel marker.
    Chae E; Jung U; Choi SS
    Environ Pollut; 2021 Nov; 288():117811. PubMed ID: 34329049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refinement of a microfurnace pyrolysis-GC-MS method for quantification of tire and road wear particles (TRWP) in sediment and solid matrices.
    More SL; Miller JV; Thornton SA; Chan K; Barber TR; Unice KM
    Sci Total Environ; 2023 May; 874():162305. PubMed ID: 36801409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.