These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35267831)

  • 1. A Sprayable and Visible Light Rapid-Cured Strippable Film for Surface Radioactive Decontamination.
    Zhang H; Zhang H; Zhu W; Xi H; Ma B; He Y
    Polymers (Basel); 2022 Mar; 14(5):. PubMed ID: 35267831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radioactive decontamination in low-temperature environments by using a novel high-strength strippable coating.
    Xu X; Pan X; Li J; Li Z; Xie Y; Lin X
    Chemosphere; 2022 Dec; 308(Pt 1):136187. PubMed ID: 36041525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strippable Polymeric Nanocomposites Comprising "Green" Chelates, for the Removal of Heavy Metals and Radionuclides.
    Toader G; Pulpea D; Rotariu T; Diacon A; Rusen E; Moldovan A; Podaru A; Ginghină R; Alexe F; Iorga O; Bajenaru SA; Ungureanu M; Dîrloman F; Pulpea B; Leonat L
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous Strippable Polymer Coating for Highly Efficient Primary Radioactive Uranium Decontamination with Versatility on Diversified Surface.
    Xue Y; Yang W; Yue R; Chen Y
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peelable Nanocomposite Coatings: "Eco-Friendly" Tools for the Safe Removal of Radiopharmaceutical Spills or Accidental Contamination of Surfaces in General-Purpose Radioisotope Laboratories.
    Rotariu T; Pulpea D; Toader G; Rusen E; Diacon A; Neculae V; Liggat J
    Pharmaceutics; 2022 Nov; 14(11):. PubMed ID: 36365178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Preparation of (Acrylic Copolymer) Ternary System Peelable Sealing Decontamination Material.
    He Z; Li Y; Xiao Z; Jiang H; Zhou Y; Luo D
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32674314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced surface decontamination of radioactive Cs by self-generated, strippable hydrogels based on reversible cross-linking.
    Yang HM; Park CW; Lee KW
    J Hazard Mater; 2019 Jan; 362():72-81. PubMed ID: 30236944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removable coatings: Thermal stability and decontamination of steel surfaces from
    Lee EH; Boglaienko D; McNamara BK; Levitskaia TG
    Chemosphere; 2022 Aug; 301():134680. PubMed ID: 35469900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decontamination of radioactive hazardous materials by using novel biodegradable strippable coatings and new generation complexing agents.
    Pulpea D; Rotariu T; Toader G; Pulpea GB; Neculae V; Teodorescu M
    Chemosphere; 2020 Nov; 258():127227. PubMed ID: 32554003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymeric gel for surface decontamination of long-lived gamma and beta-emitting radionuclides.
    Mahrous SS; Borai EH; Mansy MS
    Appl Radiat Isot; 2023 Jul; 197():110834. PubMed ID: 37130468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on acrylate peelable nuclear detergent for film formation at low temperature.
    Zhang K; Wang S; He Z; Wu M; Cao X
    Appl Radiat Isot; 2020 Aug; 162():109187. PubMed ID: 32501229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of SO(4)(2-)/TiO2 solid superacid in decontaminating radioactive pollutants.
    Yin HL; Tan ZY; Liao YT; Feng YJ
    J Environ Radioact; 2006; 87(2):227-35. PubMed ID: 16442674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degree of conversion and color stability of the light curing resin with new photoinitiator systems.
    Shin DH; Rawls HR
    Dent Mater; 2009 Aug; 25(8):1030-8. PubMed ID: 19371946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effects of Curing and Casting Methods on the Physicochemical Properties of Polymer Films.
    Li Y; Wurster DE
    AAPS PharmSciTech; 2018 Aug; 19(6):2740-2749. PubMed ID: 29978291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, Characterization, and Visible Light Curing Capacity of Polycaprolactone Acrylate.
    Tzeng JJ; Hsiao YT; Wu YC; Chen H; Lee SY; Lin YM
    Biomed Res Int; 2018; 2018():8719624. PubMed ID: 29854803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glass fiber supported BiOI thin-film fixed-bed photocatalytic reactor for water decontamination under solar light irradiation.
    Zhang Y; Shan G; Dong F; Wang C; Zhu L
    J Environ Sci (China); 2019 Jun; 80():277-286. PubMed ID: 30952345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of Kollicoat® MAE100P film's structure and properties.
    Li Y; Wurster DE
    Int J Pharm; 2021 Sep; 606():120622. PubMed ID: 33932539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoinitiators in dentistry: a review.
    Santini A; Gallegos IT; Felix CM
    Prim Dent J; 2013 Oct; 2(4):30-3. PubMed ID: 24466621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial curing characteristics of composite cements under ceramic restorations.
    Inokoshi M; Nozaki K; Takagaki T; Okazaki Y; Yoshihara K; Minakuchi S; Van Meerbeek B
    J Prosthodont Res; 2021 Feb; 65(1):39-45. PubMed ID: 32938857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monomer-to-polymer conversion and micro-tensile bond strength to dentine of experimental and commercial adhesives containing diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide or a camphorquinone/amine photo-initiator system.
    Miletic V; Pongprueksa P; De Munck J; Brooks NR; Van Meerbeek B
    J Dent; 2013 Oct; 41(10):918-26. PubMed ID: 23911598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.