These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35267861)

  • 1. Fabrication of Polymer/Graphene Biocomposites for Tissue Engineering.
    Meneses J; van de Kemp T; Costa-Almeida R; Pereira R; Magalhães FD; Castilho M; Pinto AM
    Polymers (Basel); 2022 Mar; 14(5):. PubMed ID: 35267861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flake Graphene as an Efficient Agent Governing Cellular Fate and Antimicrobial Properties of Fibrous Tissue Engineering Scaffolds-A Review.
    Banasiak AI; Racki A; Małek M; Chlanda A
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Polymers for Tissue Engineering.
    Molino BZ; Fukuda J; Molino PJ; Wallace GG
    Front Med Technol; 2021; 3():669763. PubMed ID: 35047925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances of polymer-based piezoelectric composites for biomedical applications.
    Mokhtari F; Azimi B; Salehi M; Hashemikia S; Danti S
    J Mech Behav Biomed Mater; 2021 Oct; 122():104669. PubMed ID: 34280866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printing for the design and fabrication of polymer-based gradient scaffolds.
    Bracaglia LG; Smith BT; Watson E; Arumugasaamy N; Mikos AG; Fisher JP
    Acta Biomater; 2017 Jul; 56():3-13. PubMed ID: 28342878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review.
    Keirouz A; Chung M; Kwon J; Fortunato G; Radacsi N
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1626. PubMed ID: 32166881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane.
    Naureen B; Haseeb ASMA; Basirun WJ; Muhamad F
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111228. PubMed ID: 33254956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospinning and Additive Manufacturing: Adding Three-Dimensionality to Electrospun Scaffolds for Tissue Engineering.
    Smith JA; Mele E
    Front Bioeng Biotechnol; 2021; 9():674738. PubMed ID: 34917592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Fabrication of Polymeric Scaffolds for Regenerative Therapy.
    Ratheesh G; Venugopal JR; Chinappan A; Ezhilarasu H; Sadiq A; Ramakrishna S
    ACS Biomater Sci Eng; 2017 Jul; 3(7):1175-1194. PubMed ID: 33440508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution.
    Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of 3D structures from graphene-based biocomposites.
    Sayyar S; Officer DL; Wallace GG
    J Mater Chem B; 2017 May; 5(19):3462-3482. PubMed ID: 32264283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Graphene Nanomaterials-Based Hybrid Scaffolds for Osteogenesis and Chondrogenesis.
    Kang MS; Jang HJ; Lee SH; Shin YC; Hong SW; Lee JH; Kim B; Han DW
    Adv Exp Med Biol; 2022; 1351():65-87. PubMed ID: 35175612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.
    Jammalamadaka U; Tappa K
    J Funct Biomater; 2018 Mar; 9(1):. PubMed ID: 29494503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture.
    Caminero MÁ; Chacón JM; García-Plaza E; Núñez PJ; Reverte JM; Becar JP
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31060241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melt electrospinning and its technologization in tissue engineering.
    Muerza-Cascante ML; Haylock D; Hutmacher DW; Dalton PD
    Tissue Eng Part B Rev; 2015 Apr; 21(2):187-202. PubMed ID: 25341031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent Evaluation of Medical-Grade Bioresorbable Filaments for Fused Deposition Modelling/Fused Filament Fabrication of Tissue Engineered Constructs.
    Mohseni M; Hutmacher DW; Castro NJ
    Polymers (Basel); 2018 Jan; 10(1):. PubMed ID: 30966077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of electrospinning with other techniques for the fabrication of 3D polymeric and composite nanofibrous scaffolds with improved cellular interactions.
    Bongiovanni Abel S; Montini Ballarin F; Abraham GA
    Nanotechnology; 2020 Apr; 31(17):172002. PubMed ID: 31931493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization.
    Babilotte J; Guduric V; Le Nihouannen D; Naveau A; Fricain JC; Catros S
    J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2579-2595. PubMed ID: 30848068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures.
    Chen F; Hochleitner G; Woodfield T; Groll J; Dalton PD; Amsden BG
    Biomacromolecules; 2016 Jan; 17(1):208-14. PubMed ID: 26620885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.