These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35268575)

  • 21. Label-free identification and differentiation of different microplastics using phasor analysis of fluorescence lifetime imaging microscopy (FLIM)-generated data.
    Monteleone A; Schary W; Wenzel F; Langhals H; Dietrich DR
    Chem Biol Interact; 2021 Jun; 342():109466. PubMed ID: 33865829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface enhanced Raman scattering of inorganic microcrystalline art pigments for systematic cultural heritage studies.
    Shabunya-Klyachkovskaya EV; Kulakovich OS; Gaponenko SV
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117235. PubMed ID: 31200267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multivariate analysis and laser-induced breakdown spectroscopy (LIBS): a new approach for the spatially resolved classification of modern art materials.
    Pagnin L; Brunnbauer L; Wiesinger R; Limbeck A; Schreiner M
    Anal Bioanal Chem; 2020 May; 412(13):3187-3198. PubMed ID: 32172329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-of-flight secondary ion mass spectrometry imaging in cultural heritage: A focus on old paintings.
    Bouvier C; Van Nuffel S; Walter P; Brunelle A
    J Mass Spectrom; 2022 Jan; 57(1):e4803. PubMed ID: 34997666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence lifetime imaging of coral fluorescent proteins.
    Cox G; Matz M; Salih A
    Microsc Res Tech; 2007 Mar; 70(3):243-51. PubMed ID: 17279514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phasor imaging with a widefield photon-counting detector.
    Colyer RA; Siegmund OH; Tremsin AS; Vallerga JV; Weiss S; Michalet X
    J Biomed Opt; 2012 Jan; 17(1):016008. PubMed ID: 22352658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of Caspase-3 Activity During Apoptosis with Fluorescence Lifetime-Based Cytometry Measurements and Phasor Analyses.
    Nichani K; Li J; Suzuki M; Houston JP
    Cytometry A; 2020 Dec; 97(12):1265-1275. PubMed ID: 32790129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A modified phasor approach for analyzing time-gated fluorescence lifetime images.
    Fereidouni F; Esposito A; Blab GA; Gerritsen HC
    J Microsc; 2011 Dec; 244(3):248-58. PubMed ID: 21933184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. First use of portable system coupling X-ray diffraction and X-ray fluorescence for in-situ analysis of prehistoric rock art.
    Beck L; Rousselière H; Castaing J; Duran A; Lebon M; Moignard B; Plassard F
    Talanta; 2014 Nov; 129():459-64. PubMed ID: 25127619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of proteinaceous binders used in artworks by MALDI-TOF mass spectrometry.
    Kuckova S; Hynek R; Kodicek M
    Anal Bioanal Chem; 2007 May; 388(1):201-6. PubMed ID: 17340079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyper-Spectral Imaging Technique in the Cultural Heritage Field: New Possible Scenarios.
    Picollo M; Cucci C; Casini A; Stefani L
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry.
    Alturkistany F; Nichani K; Houston KD; Houston JP
    Cytometry A; 2019 Jan; 95(1):70-79. PubMed ID: 30369063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectrally resolved fluorescence lifetime imaging of Nile red for measurements of intracellular polarity.
    Levitt JA; Chung PH; Suhling K
    J Biomed Opt; 2015 Sep; 20(9):096002. PubMed ID: 26334975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extended output phasor representation of multi-spectral fluorescence lifetime imaging microscopy.
    Campos-Delgado DU; Navarro OG; Arce-Santana ER; Jo JA
    Biomed Opt Express; 2015 Jun; 6(6):2088-105. PubMed ID: 26114031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach.
    Ranjit S; Malacrida L; Jameson DM; Gratton E
    Nat Protoc; 2018 Sep; 13(9):1979-2004. PubMed ID: 30190551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linear Combination Properties of the Phasor Space in Fluorescence Imaging.
    Torrado B; Malacrida L; Ranjit S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multivariate chemical mapping of pigments and binders in easel painting cross-sections by micro IR reflection spectroscopy.
    Rosi F; Federici A; Brunetti BG; Sgamellotti A; Clementi S; Miliani C
    Anal Bioanal Chem; 2011 Mar; 399(9):3133-45. PubMed ID: 20936268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-invasive Investigations of Paintings by Portable Instrumentation: The MOLAB Experience.
    Brunetti B; Miliani C; Rosi F; Doherty B; Monico L; Romani A; Sgamellotti A
    Top Curr Chem (Cham); 2016 Feb; 374(1):10. PubMed ID: 27572993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phasor-based image segmentation: machine learning clustering techniques.
    Vallmitjana A; Torrado B; Gratton E
    Biomed Opt Express; 2021 Jun; 12(6):3410-3422. PubMed ID: 34221668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Benefits of applying combined diffuse reflectance FTIR spectroscopy and principal component analysis for the study of blue tempera historical painting.
    Navas N; Romero-Pastor J; Manzano E; Cardell C
    Anal Chim Acta; 2008 Dec; 630(2):141-9. PubMed ID: 19012825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.