BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 35268599)

  • 21. An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy.
    Bahner N; Reich P; Frense D; Menger M; Schieke K; Beckmann D
    Anal Bioanal Chem; 2018 Feb; 410(5):1453-1462. PubMed ID: 29199352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The accurate use of impedance analysis for the study of microbial electrochemical systems.
    Dominguez-Benetton X; Sevda S; Vanbroekhoven K; Pant D
    Chem Soc Rev; 2012 Nov; 41(21):7228-46. PubMed ID: 22885371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interdigitated aluminium and titanium sensors for assessing epithelial barrier functionality by electric cell-substrate impedance spectroscopy (ECIS).
    Schmiedinger T; Partel S; Lechleitner T; Eiter O; Hekl D; Kaseman S; Lukas P; Edlinger J; Lechner J; Seppi T
    Biomed Microdevices; 2020 Apr; 22(2):30. PubMed ID: 32328801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrical impedimetric biosensors for liver function detection.
    Chuang YH; Chang YT; Liu KL; Chang HY; Yew TR
    Biosens Bioelectron; 2011 Oct; 28(1):368-72. PubMed ID: 21840200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Experimental Conditions on the Signaling Fidelity of Impedance-Based Nucleic Acid Sensors.
    Vogiazi V; de la Cruz A; Heineman WR; White RJ; Dionysiou DD
    Anal Chem; 2021 Jan; 93(2):812-819. PubMed ID: 33395261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.
    Barsan MM; Ghica ME; Brett CM
    Anal Chim Acta; 2015 Jun; 881():1-23. PubMed ID: 26041516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A review on impedimetric biosensors.
    Bahadır EB; Sezgintürk MK
    Artif Cells Nanomed Biotechnol; 2016; 44(1):248-62. PubMed ID: 25211230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determining nanocapillary geometry from electrochemical impedance spectroscopy using a variable topology network circuit model.
    Vitarelli MJ; Prakash S; Talaga DS
    Anal Chem; 2011 Jan; 83(2):533-41. PubMed ID: 21188971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Indicators of water biotoxicity obtained from turn-off microbial electrochemical sensors.
    Chu N; Cai J; Li Z; Gao Y; Liang Q; Hao W; Liu P; Jiang Y; Zeng RJ
    Chemosphere; 2022 Jan; 286(Pt 2):131725. PubMed ID: 34352539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of electrochemical impedance spectroscopy response for commercial lithium-ion batteries: modeling of equivalent circuit elements.
    Morali U; Erol S
    Turk J Chem; 2020; 44(3):602-613. PubMed ID: 33488180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical impedance spectroscopy study of corrosion characteristics of palladium-silver dental alloys.
    Sun D; Frankel GS; Brantley WA; Heshmati RH; Johnston WM
    J Biomed Mater Res B Appl Biomater; 2021 Nov; 109(11):1777-1786. PubMed ID: 33817975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical impedance spectroscopy study on polymerization of L-lysine on electrode surface and its application for immobilization and detection of suspension cells.
    Huang B; Jia N; Chen L; Tan L; Yao S
    Anal Chem; 2014 Jul; 86(14):6940-7. PubMed ID: 24939429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a POCT type insulin sensor employing anti-insulin single chain variable fragment based on faradaic electrochemical impedance spectroscopy under single frequency measurement.
    Khanwalker M; Fujita R; Lee J; Wilson E; Ito K; Asano R; Ikebukuro K; LaBelle J; Sode K
    Biosens Bioelectron; 2022 Mar; 200():113901. PubMed ID: 34968857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical models for electrochemical impedance spectroscopy and local ζ-potential of unfolded proteins in nanopores.
    Vitarelli MJ; Talaga DS
    J Chem Phys; 2013 Sep; 139(10):105101. PubMed ID: 24050368
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards optimization of plant cell detection in suspensions using impedance-based analyses and the unified equivalent circuit model.
    Kadan-Jamal K; Jog A; Sophocleous M; Georgiou J; Avni A; Shacham-Diamand Y
    Sci Rep; 2021 Sep; 11(1):19310. PubMed ID: 34588592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modified Impedance Sensing System Determination of Virulence Characteristics of Pathogenic Bacteria
    Huynh DTN; Lim MC; Jaiswal RK
    Indian J Microbiol; 2023 Dec; 63(4):421-428. PubMed ID: 38031597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of stable and reproducible biosensors based on electrochemical impedance spectroscopy: three-electrode versus two-electrode setup.
    Ianeselli L; Grenci G; Callegari C; Tormen M; Casalis L
    Biosens Bioelectron; 2014 May; 55():1-6. PubMed ID: 24355458
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interpreting Dynamic Interfacial Changes at Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy.
    Meunier CJ; Denison JD; McCarty GS; Sombers LA
    Langmuir; 2020 Apr; 36(15):4214-4223. PubMed ID: 32216254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On-chip latex agglutination immunoassay readout by electrochemical impedance spectroscopy.
    Gupta S; Kilpatrick PK; Melvin E; Velev OD
    Lab Chip; 2012 Nov; 12(21):4279-86. PubMed ID: 22930134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.