BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 35268843)

  • 1. Screening of Natural Products Inhibitors of SARS-CoV-2 Entry.
    González-Maldonado P; Alvarenga N; Burgos-Edwards A; Flores-Giubi ME; Barúa JE; Romero-Rodríguez MC; Soto-Rifo R; Valiente-Echeverría F; Langjahr P; Cantero-González G; Sotelo PH
    Molecules; 2022 Mar; 27(5):. PubMed ID: 35268843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and evaluation of the inhibitory effect of Prunella vulgaris extract on SARS-coronavirus 2 virus entry.
    Ao Z; Chan M; Ouyang MJ; Olukitibi TA; Mahmoudi M; Kobasa D; Yao X
    PLoS One; 2021; 16(6):e0251649. PubMed ID: 34106944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of Pseudotyped Coronaviruses for the Screening of Entry Inhibitors: Green Tea Extract Inhibits the Entry of SARS-CoV-1, MERSCoV, and SARS-CoV-2 by Blocking Receptor-spike Interaction.
    Joseph J; Karthika T; Das VRA; Raj VS
    Curr Pharm Biotechnol; 2022; 23(8):1118-1129. PubMed ID: 34375189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of SARS-CoV-2 Receptor Binding Inhibitors by In Vitro Screening of Drug Libraries.
    David AB; Diamant E; Dor E; Barnea A; Natan N; Levin L; Chapman S; Mimran LC; Epstein E; Zichel R; Torgeman A
    Molecules; 2021 May; 26(11):. PubMed ID: 34072087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of ACE2-Spike Interaction by an ACE2 Binder Suppresses SARS-CoV-2 Entry.
    Shin YH; Jeong K; Lee J; Lee HJ; Yim J; Kim J; Kim S; Park SB
    Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202115695. PubMed ID: 35043545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Updated Review on Betacoronavirus Viral Entry Inhibitors: Learning from Past Discoveries to Advance COVID-19 Drug Discovery.
    Sabbah DA; Hajjo R; Bardaweel SK; Zhong HA
    Curr Top Med Chem; 2021; 21(7):571-596. PubMed ID: 33463470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of S-protein RBD and hACE2 Interaction for Control of SARSCoV- 2 Infection (COVID-19).
    Nayak SK
    Mini Rev Med Chem; 2021; 21(6):689-703. PubMed ID: 33208074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active components in Ephedra sinica stapf disrupt the interaction between ACE2 and SARS-CoV-2 RBD: Potent COVID-19 therapeutic agents.
    Mei J; Zhou Y; Yang X; Zhang F; Liu X; Yu B
    J Ethnopharmacol; 2021 Oct; 278():114303. PubMed ID: 34102269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential antiviral activity of isorhamnetin against SARS-CoV-2 spike pseudotyped virus in vitro.
    Zhan Y; Ta W; Tang W; Hua R; Wang J; Wang C; Lu W
    Drug Dev Res; 2021 Dec; 82(8):1124-1130. PubMed ID: 33847382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high throughput screening assay for inhibitors of SARS-CoV-2 pseudotyped particle entry.
    Xu M; Pradhan M; Gorshkov K; Petersen JD; Shen M; Guo H; Zhu W; Klumpp-Thomas C; Michael S; Itkin M; Itkin Z; Straus MR; Zimmerberg J; Zheng W; Whittaker GR; Chen CZ
    SLAS Discov; 2022 Mar; 27(2):86-94. PubMed ID: 35086793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry.
    Zhang D; Hamdoun S; Chen R; Yang L; Ip CK; Qu Y; Li R; Jiang H; Yang Z; Chung SK; Liu L; Wong VKW
    Pharmacol Res; 2021 Oct; 172():105820. PubMed ID: 34403732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycyrrhizic Acid Inhibits SARS-CoV-2 Infection by Blocking Spike Protein-Mediated Cell Attachment.
    Li J; Xu D; Wang L; Zhang M; Zhang G; Li E; He S
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of Novel Spike Inhibitors against SARS-CoV-2 Infection.
    Tai LT; Yeh CY; Chang YJ; Liu JF; Hsu KC; Cheng JC; Lu CH
    Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiviral Activity of Two Marine Carotenoids against SARS-CoV-2 Virus Entry In Silico and In Vitro.
    Yim SK; Kim I; Warren B; Kim J; Jung K; Ku B
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34204256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Luteolin: a blocker of SARS-CoV-2 cell entry based on relaxed complex scheme, molecular dynamics simulation, and metadynamics.
    Shadrack DM; Deogratias G; Kiruri LW; Onoka I; Vianney JM; Swai H; Nyandoro SS
    J Mol Model; 2021 Jul; 27(8):221. PubMed ID: 34236507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Withanone from
    Balkrishna A; Pokhrel S; Singh H; Joshi M; Mulay VP; Haldar S; Varshney A
    Drug Des Devel Ther; 2021; 15():1111-1133. PubMed ID: 33737804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudovirus-Based Systems for Screening Natural Antiviral Agents: A Comprehensive Review.
    Trischitta P; Tamburello MP; Venuti A; Pennisi R
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tinocordiside from
    Balkrishna A; Pokhrel S; Varshney A
    Comb Chem High Throughput Screen; 2021; 24(10):1795-1802. PubMed ID: 33172372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing of the inhibitory effects of loratadine and desloratadine on SARS-CoV-2 spike pseudotyped virus viropexis.
    Hou Y; Ge S; Li X; Wang C; He H; He L
    Chem Biol Interact; 2021 Apr; 338():109420. PubMed ID: 33609497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery and Evaluation of Entry Inhibitors for SARS-CoV-2 and Its Emerging Variants.
    Acharya A; Pandey K; Thurman M; Klug E; Trivedi J; Sharma K; Lorson CL; Singh K; Byrareddy SN
    J Virol; 2021 Nov; 95(24):e0143721. PubMed ID: 34550770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.