These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 35268947)
1. Artificial Neural Networks for Predicting Plastic Anisotropy of Sheet Metals Based on Indentation Test. Xia J; Won C; Kim H; Lee W; Yoon J Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268947 [TBL] [Abstract][Full Text] [Related]
2. A Novel Approach to Estimate the Plastic Anisotropy of Metallic Materials Using Cross-Sectional Indentation Applied to Extruded Magnesium Alloy AZ31B. Wang M; Wu J; Wu H; Zhang Z; Fan H Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28892014 [TBL] [Abstract][Full Text] [Related]
3. Experimental Investigation of Strain Rate Influence on Anisotropy of Uniaxial Tensile Mechanical Properties of CuFe2P Alloy Sheet. Bubalo A; Tonković Z; Krstulović-Opara L; Cvitanić V Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998218 [TBL] [Abstract][Full Text] [Related]
4. An Inverse Method for Measuring Elastoplastic Properties of Metallic Materials Using Bayesian Model and Residual Imprint from Spherical Indentation. Wang M; Wang W Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885260 [TBL] [Abstract][Full Text] [Related]
5. Indentation Reverse Algorithm of Mechanical Response for Elastoplastic Coatings Based on LSTM Deep Learning. Long X; Ding X; Li J; Dong R; Su Y; Chang C Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048911 [TBL] [Abstract][Full Text] [Related]
6. Research on Determining Elastic-Plastic Constitutive Parameters of Materials from Load Depth Curves Based on Nanoindentation Technology. Li Z; Ye Y; Zhang G; Guan F; Luo J; Wang P; Zhao J; Zhao L Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241674 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the Elastoplastic Response of Low Zn-Cu-Ti Alloy Sheets Using the CPB-06 Criterion. Alister F; Celentano D; Signorelli J; Bouchard PO; Pino D; Cruchaga M Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31547174 [TBL] [Abstract][Full Text] [Related]
8. Towards an Optimized Artificial Neural Network for Predicting Flow Stress of In718 Alloys at High Temperatures. Zhang C; Shi Q; Wang Y; Qiao J; Tang T; Zhou J; Liang W; Chen G Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048956 [TBL] [Abstract][Full Text] [Related]
9. The Application of a Hybrid Method for the Identification of Elastic-Plastic Material Parameters. Potrzeszcz-Sut B; Dudzik A Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744195 [TBL] [Abstract][Full Text] [Related]
10. A Three-Dimensional Elastic-Plastic Contact Analysis of Vickers Indenter on a Deep Drawing Quality Steel Sheet. Trzepiecinski T; Lemu HG Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31277427 [TBL] [Abstract][Full Text] [Related]
11. Improving Prediction of Springback in Sheet Metal Forming Using Multilayer Perceptron-Based Genetic Algorithm. Trzepieciński T; Lemu HG Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32674296 [TBL] [Abstract][Full Text] [Related]
12. Prediction of Mechanical Properties by Artificial Neural Networks to Characterize the Plastic Behavior of Aluminum Alloys. Merayo D; Rodríguez-Prieto A; Camacho AM Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33228013 [TBL] [Abstract][Full Text] [Related]
13. Experimental Investigation on the Formability of Al-Mg Alloy 5052 Sheet by Tensile and Cupping Test. He H; Yang T; Ren Y; Peng Y; Xue S; Zheng L Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556753 [TBL] [Abstract][Full Text] [Related]
14. Hybrid Artificial Neural Network-Based Models to Investigate Deformation Behavior of AZ31B Magnesium Alloy at Warm Tensile Deformation. Murugesan M; Yu JH; Chung W; Lee CW Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570015 [TBL] [Abstract][Full Text] [Related]
15. An Investigation of Nanomechanical Properties of Materials using Nanoindentation and Artificial Neural Network. Lee H; Huen WY; Vimonsatit V; Mendis P Sci Rep; 2019 Sep; 9(1):13189. PubMed ID: 31515524 [TBL] [Abstract][Full Text] [Related]
16. Inverse Method to Determine Parameters for Time-Dependent and Cyclic Plastic Material Behavior from Instrumented Indentation Tests. Sajjad HM; Chudoba T; Hartmaier A Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203115 [TBL] [Abstract][Full Text] [Related]
17. Comparative Analysis of Machine Learning Methods for Predicting Robotized Incremental Metal Sheet Forming Force. Ostasevicius V; Paleviciute I; Paulauskaite-Taraseviciene A; Jurenas V; Eidukynas D; Kizauskiene L Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009560 [TBL] [Abstract][Full Text] [Related]
18. Residual Strength Prediction of Aluminum Panels with Multiple Site Damage Using Artificial Neural Networks. Hijazi A; Al-Dahidi S; Altarazi S Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33218153 [TBL] [Abstract][Full Text] [Related]
19. Application of Macro-Instrumented Indentation Test for Superficial Residual Stress and Mechanical Properties Measurement for HY Steel Welded T-Joints. Lee J; Lee K; Lee S; Kwon OM; Kang WK; Lim JI; Lee HK; Kim SM; Kwon D Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921901 [TBL] [Abstract][Full Text] [Related]
20. Application of Python-Based Abaqus Secondary Development in Laser Shock Forming of Aluminum Alloy 6082-T6. Yang J; Zhang T; Kong C; Sun B; Zhu R Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]