These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35268998)

  • 1. Experimental Research on Manson-Coffin Curves for the Frame Material of an Unconventional Vehicle.
    Blatnický M; Dižo J; Sága M; Brůna M; Vaško M
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Determination of the Manson-Coffin Curves for an Original Unconventional Vehicle Frame.
    Sága M; Blatnický M; Vaško M; Dižo J; Kopas P; Gerlici J
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33092275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive Analysis of a Tricycle Structure with a Steering System for Improvement of Driving Properties While Cornering.
    Blatnický M; Dižo J; Molnár D; Suchánek A
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research of the Fatigue Life of Welded Joints of High Strength Steel S960 QL Created Using Laser and Electron Beams.
    Sága M; Blatnická M; Blatnický M; Dižo J; Gerlici J
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32503166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices.
    Runciman A; Xu D; Pelton AR; Ritchie RO
    Biomaterials; 2011 Aug; 32(22):4987-93. PubMed ID: 21531019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Light Metal Alloy EN AW 6063 to Vehicle Frame Construction with an Innovated Steering Mechanism.
    Blatnický M; Sága M; Dižo J; Bruna M
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32054050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure and Low Cycle Fatigue Properties of AA5083 H111 Friction Stir Welded Joint.
    Torzewski J; Grzelak K; Wachowski M; Kosturek R
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Load Controlled Fatigue Behaviour of Microplasma Arc Welded Thin Titanium Grade 5 (6Al-4V) Sheets.
    Szusta J; Tüzün N; Karakaş Ö
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33202932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue Life of Aluminum Alloys Based on Shear and Hydrostatic Strain.
    Łagoda T; Głowacka K; Kurek A
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possibilities of reducing the number of welds on rail vehicle doors.
    Sigmund M; Spichal J
    Sci Rep; 2022 Oct; 12(1):16861. PubMed ID: 36207357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of fatigue damage in welded aluminum joints subjected to multiaxial stress state.
    Soares RC; da Rosa E; Sousa AIF
    Heliyon; 2023 Apr; 9(4):e15196. PubMed ID: 37151671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimate of Coffin-Manson Curve Shift for the Porous Alloy AlSi9Cu3 Based on Numerical Simulations of a Porous Material Carried Out by Using the Taguchi Array.
    Tomažinčič D; Klemenc J
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue Behavior of Linear Friction Welded Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.1Si Dissimilar Welds.
    Rajan S; Wanjara P; Gholipour J; Kabir AS
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue Modeling and Numerical Analysis of Re-Filling Probe Hole of Friction Stir Spot Welded Joints in Aluminum Alloys.
    Yousefi A; Serjouei A; Hedayati R; Bodaghi M
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33922847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Life-Dependent Material Parameters to Fatigue Life Prediction under Multiaxial and Non-Zero Mean Loading.
    Kluger K; Karolczuk A; Derda S
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32235605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of Multiaxial Fatigue Strength Criteria on Specimens from Structural Steel in the High-Cycle Fatigue Region.
    Fojtík F; Papuga J; Fusek M; Halama R
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33383926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited Stress Surface Model for Bending and Torsion Fatigue Loading with the Mean Load Value.
    Pawliczek R; Rozumek D
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extremely-Low-Cycle Fatigue Damage for Beam-to-Column Welded Joints Using Structural Details.
    Huang L; Qu W; Zhao E
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32283852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavior of Weld to S960MC High Strength Steel from Joining Process at Micro-Jet Cooling with Critical Parameters under Static and Fatigue Loading.
    Szymczak T; Szczucka-Lasota B; Węgrzyn T; Łazarz B; Jurek A
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34063927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Fatigue Performance of Friction-Stir Welded Aluminum Alloys.
    Malopheyev S; Vysotskiy I; Zhemchuzhnikova D; Mironov S; Kaibyshev R
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32977697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.