BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 35269050)

  • 1. Study on Deterioration of Gray Brick with Different Moisture Contents under Freeze-Thaw Environment.
    Yue J; Ma C; Zhao L; Kong Q; Xu X; Wang Z; Chen Y
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35269050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frost resistance investigation of fiber reinforced recycled brick aggregate cementitious materials.
    Ji Y; Zhang H
    Sci Rep; 2022 Sep; 12(1):15311. PubMed ID: 36097037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the Size and Type of Pores on Brick Resistance to Freeze-Thaw Cycles.
    Netinger Grubeša I; Vračević M; Ducman V; Marković B; Szenti I; Kukovecz Á
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32842686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation Mechanism and Numerical Simulation of Pervious Concrete under Salt Freezing-Thawing Cycle.
    Xiang J; Liu H; Lu H; Gui F
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study of the freeze thaw characteristics of expansive soil slope models with different initial moisture contents.
    Yang Z; Lv J; Shi W; Jia C; Wang C; Hong Y; Ling X
    Sci Rep; 2021 Nov; 11(1):23177. PubMed ID: 34848825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Pore-Size Distribution on the Resistance of Clay Brick to Freeze-Thaw Cycles.
    Netinger Grubeša I; Vračević M; Ranogajec J; Vučetić S
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32455598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the Influence of Saturation on Freeze-Thaw Damage Characteristics of Sandstone.
    Zhang X; Jin J; Liu X; Wang Y; Li Y
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Hydrophilic Polyurethane on Interfacial Shear Strength of Pisha Sandstone Consolidation under Freeze-Thaw Cycles.
    Ma W; Yang K; Zhou X; Luo Z; Guo Y
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Study on Mechanical Properties of Basalt Fiber Concrete after Cryogenic Freeze-Thaw Cycles.
    Li Y; Gu Z; Zhao B; Zhang J; Zou X
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors controlling the mechanical properties degradation and permeability of coal subjected to liquid nitrogen freeze-thaw.
    Qin L; Zhai C; Liu S; Xu J
    Sci Rep; 2017 Jun; 7(1):3675. PubMed ID: 28623329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term effects of combined freeze–thaw and saline–alkali stresses on the physiological response in highland barley (
    Bao L; Bao G; Zhang X; Qu Y; Guo J; Pan X
    Funct Plant Biol; 2022 Oct; 49(11):970-979. PubMed ID: 35892141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the factors affecting cracking of earthen soil under dry shrinkage and freeze-thaw conditions.
    Yue J; Huang X; Zhao L; Wang Z
    Sci Rep; 2022 Feb; 12(1):1816. PubMed ID: 35110686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Polypropylene Fibers on the Frost Resistance of Natural Sand Concrete and Machine-Made Sand Concrete.
    Tan Y; Long J; Xiong W; Chen X; Zhao B
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36236002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The textural properties of cooked convenience rice upon repeated freeze-thaw treatments are largely affected by water mobility at grain level.
    Lu S; Li J; Xu M; Mu Y; Wen Y; Li H; Wang J; Sun B
    Food Res Int; 2023 Jan; 163():112254. PubMed ID: 36596165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Multiple Freeze-Thaw Cycles on Biochemical and Physical Quality Changes of White Shrimp (Penaeus vannamei) Treated with Lysine and Sodium Bicarbonate.
    Wachirasiri K; Wanlapa S; Uttapap D; Puttanlek C; Rungsardthong V
    J Food Sci; 2019 Jul; 84(7):1784-1790. PubMed ID: 31218686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deterioration mechanisms of tuff with surface fractures under freeze-thaw cycles.
    Lai R; Zhang Z; Zhu J; Xu Z; Wei X; Liu X; Xiong B
    Sci Rep; 2024 Jun; 14(1):13402. PubMed ID: 38862575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Freeze-Thaw Cycles on the Shear Strength of Root-Soil Composite.
    Liu Q; Huang J; Zhang Z; Liu G; Jiang Q; Liu L; Khan I
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Mechanical Properties and Visco-Elastic Damage Constitutive Model of Freeze-thawed Concrete.
    Li Y; Zhai Y; Liang W; Li Y; Dong Q; Meng F
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32932696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moisture content and material density affects severity of frost damage in earthen heritage.
    Richards J; Guo Q; Viles H; Wang Y; Zhang B; Zhang H
    Sci Total Environ; 2022 May; 819():153047. PubMed ID: 35032524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changing of mechanical property and bearing capacity of strongly chlorine saline soil under freeze-thaw cycles.
    Ding S; Li S; Kong S; Li Q; Yang T; Nie Z; Zhao G
    Sci Rep; 2024 Mar; 14(1):6203. PubMed ID: 38485713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.