BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35269093)

  • 1. Numerical Evaluation of the Hygrothermal Performance of a Capillary Active Internal Wall Insulation System under Different Internal Conditions.
    Kaczorek D
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Insulated Wall Systems with Exterior Insulation of Polyisocyanurate under Different Facer Materials: Material Characterization and Long-Term Hygrothermal Performance Assessment.
    Iffa E; Tariku F; Simpson WY
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Analysis of Moisture-Dependent Thermal Conductivity, and Hygric Properties of Novel Hemp-shive Insulations with Numerical Assessment of Their In-Built Hygrothermal and Energy Performance.
    Latif E
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical analysis on the hygrothermal behavior of building envelope according to CLT wall assembly considering the hygrothermal-environmental zone in Korea.
    Chang SJ; Yoo J; Wi S; Kim S
    Environ Res; 2020 Dec; 191():110198. PubMed ID: 32949614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hygrothermal Behavior of a Washing Fines-Hemp Wall under French and Tunisian Summer Climates: Experimental and Numerical Approach.
    Boumediene N; Collet F; Prétot S; Elaoud S
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35161048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hygrothermal Properties and Performance of Bio-Based Insulation Materials Locally Sourced in Sweden.
    Ranefjärd O; Strandberg-de Bruijn PB; Wadsö L
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hygrothermal Performance of Salt (NaCl) for Internal Surface Applications in the Building Envelope.
    Pungercar V; Musso F
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The moisture distribution in wall-to-floor thermal bridges and its influence on mould growth.
    Xue Y; Fan Y; Lu J; Ge J
    UCL Open Environ; 2022; 4():e042. PubMed ID: 37228471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on Thermal Insulation Performance and Impact on Indoor Air Quality of Cellulose-Based Thermal Insulation Materials.
    Petcu C; Hegyi A; Stoian V; Dragomir CS; Ciobanu AA; Lăzărescu AV; Florean C
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hygrothermal monitoring of replacement infill panels for historic timber-frame buildings: initial findings.
    Whitman CJ; Prizeman O; Walker P; McCaig I; Rhee-Duverne S
    UCL Open Environ; 2022; 4():e039. PubMed ID: 37228460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of hygrothermal performance of wood-derived biocomposite with biochar in response to climate change.
    Jeon J; Park JH; Yuk H; Kim YU; Yun BY; Wi S; Kim S
    Environ Res; 2021 Feb; 193():110359. PubMed ID: 33127398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humidity control effect of vapor-permeable walls employing hygroscopic insulation material.
    Lee H; Ozaki A; Lee M; Yamamoto T
    Indoor Air; 2020 Mar; 30(2):346-360. PubMed ID: 31710390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term monitoring data of hygrothermal conditions of a retrofitted historic building in Settequerce, South Tyrol (Italy).
    Panico S; Larcher M; Herrera-Avellanosa D; Cennamo D; Troi A
    Data Brief; 2024 Apr; 53():110137. PubMed ID: 38375139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hygrothermal and Acoustical Performance of Starch-Beet Pulp Composites for Building Thermal Insulation.
    Karaky H; Maalouf C; Bliard C; Moussa T; El Wakil N; Lachi M; Polidori G
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30189650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Location and Insulation Material on Energy Performance of Residential Buildings as per Saudi Building Code (SBC) 601/602 in Saudi Arabia.
    Alyami SH; Alqahtany A; Ashraf N; Osman A; Aldossary NA; Almutlaqa A; Al-Maziad F; Alshammari MS; Al-Gehlani WAG
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of biochar-mortar composite as a humidity control material to improve the building energy and hygrothermal performance.
    Park JH; Kim YU; Jeon J; Yun BY; Kang Y; Kim S
    Sci Total Environ; 2021 Jun; 775():145552. PubMed ID: 33611181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dataset on the hygrothermal performance of a date palm concrete wall.
    Alioua T; Agoudjil B; Chennouf N; Boudenne A; Benzarti K
    Data Brief; 2019 Dec; 27():104590. PubMed ID: 31687433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hygrothermal climate analysis: An Australian dataset.
    Brambilla A; Javed H; Strang M
    Data Brief; 2022 Jun; 42():108291. PubMed ID: 35647236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Verification of Thermal Insulation in Timber Framed Walls.
    Michálková D; Ďurica P
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hygric Behavior of Viticulture By-Product Composites for Building Insulation.
    Badouard C; Maalouf C; Bliard C; Polidori G; Bogard F
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.