These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35269118)

  • 1. Low-Temperature Cu/SiO
    Ong JJ; Chiu WL; Lee OH; Chiang CW; Chang HH; Wang CH; Shie KC; Yang SC; Tran DP; Tu KN; Chen C
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of Thermal Stress by X-ray Nano-Diffraction in (111)-Oriented Nanotwinned Cu Bumps for Cu/SiO
    Hsu WY; Yang SC; Lin YY; Hsieh WZ; Tu KN; Chiu WL; Chang HH; Chiang CY; Chen C
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eliminating Cu-Cu Bonding Interfaces Using Electroplated Copper and (111)-Oriented Nanotwinned Copper.
    Lu TF; Cheng YF; Wang PW; Yen YT; Wu YS
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cu-Based Thermocompression Bonding and Cu/Dielectric Hybrid Bonding for Three-Dimensional Integrated Circuits (3D ICs) Application.
    Huang YC; Lin YX; Hsiung CK; Hung TH; Chen KN
    Nanomaterials (Basel); 2023 Sep; 13(17):. PubMed ID: 37687000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of oxidation in uni-directionally and randomly oriented Cu films for low temperature Cu-to-Cu direct bonding.
    Tseng CH; Tu KN; Chen C
    Sci Rep; 2018 Jul; 8(1):10671. PubMed ID: 30006591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between the Microstructures of Bonding Interfaces and the Shear Strength of Cu-to-Cu Joints Using (111)-Oriented and Nanotwinned Cu.
    Juang JY; Lu CL; Li YJ; Tu KN; Chen C
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30477274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Characterization of Low-Temperature Cu-to-Cu Direct Bonding with Chemical Mechanical Planarized Nanotwinned Cu Films.
    Lin PF; Tran DP; Liu HC; Li YY; Chen C
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of Abnormal Grain Growth by Surface Quenching Treatment to Eliminate Cu-Cu Bonding Interfaces Using (111)-Oriented Nanotwinned Copper.
    Lu TF; Yen YT; Cheng YF; Wang PW; Wu YS
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Temperature Co-hydroxylated Cu/SiO
    Kang Q; Wang C; Zhou S; Li G; Lu T; Tian Y; He P
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38866-38876. PubMed ID: 34318673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bonding-Based Wafer-Level Vacuum Packaging Using Atomic Hydrogen Pre-Treated Cu Bonding Frames.
    Tanaka K; Hirano H; Kumano M; Froemel J; Tanaka S
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research of Wafer Level Bonding Process Based on Cu-Sn Eutectic.
    Wu D; Tian W; Wang C; Huo R; Wang Y
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32825406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu.
    Liu CM; Lin HW; Huang YS; Chu YC; Chen C; Lyu DR; Chen KN; Tu KN
    Sci Rep; 2015 May; 5():9734. PubMed ID: 25962757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of fatigue resistance by recrystallization and grain growth to eliminate bonding interfaces in Cu-Cu joints.
    Ong JJ; Tran DP; Lan MC; Shie KC; Hsu PN; Tsou NT; Chen C
    Sci Rep; 2022 Jul; 12(1):13116. PubMed ID: 35907932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research Progress of Electroplated Nanotwinned Copper in Microelectronic Packaging.
    Chen KX; Gao LY; Li Z; Sun R; Liu ZQ
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and Characterization of Low Temperature Wafer-Level Vacuum Packaging Using Cu-Sn Bonding and Nanomultilayer Getter.
    Kim T; Han S; Lee J; Na Y; Jung J; Park YC; Oh J; Yang C; Kim HY
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hermetic Packaging Based on Cu-Sn and Au-Au Dual Bonding for High-Temperature Graphene Pressure Sensor.
    Wang J; Zhang H; Chen X; Li M
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Nanotwinned Copper Bonding through Epoxy-Induced Copper Surface Modification.
    Lu TF; Wang PW; Cheng YF; Yen YT; Wu YS
    Nanomaterials (Basel); 2024 Apr; 14(9):. PubMed ID: 38727365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Compressive Stress on Copper Bonding Quality and Bonding Mechanisms in Advanced Packaging.
    Lu TF; Lee PY; Wu YS
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Temperature and Low-Pressure Cu-Cu Bonding by Highly Sinterable Cu Nanoparticle Paste.
    Li J; Yu X; Shi T; Cheng C; Fan J; Cheng S; Liao G; Tang Z
    Nanoscale Res Lett; 2017 Dec; 12(1):255. PubMed ID: 28384997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles.
    Liu J; Chen H; Ji H; Li M
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33289-33298. PubMed ID: 27934145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.