These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35269118)

  • 41. Low-Temperature Transient Liquid Phase Bonding Technology via Cu Porous-Sn58Bi Solid-Liquid System under Formic Acid Atmosphere.
    He S; Xiong B; Xu F; Chen B; Cui Y; Hu C; Yue G; Shen YA
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984269
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Low-Temperature Copper Bonding Strategy with Graphene Interlayer.
    Wang H; Leong WS; Hu F; Ju L; Su C; Guo Y; Li J; Li M; Hu A; Kong J
    ACS Nano; 2018 Mar; 12(3):2395-2402. PubMed ID: 29370518
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comprehensive Die Shear Test of Silicon Packages Bonded by Thermocompression of Al Layers with Thin Sn Capping or Insertions.
    Satoh S; Fukushi H; Esashi M; Tanaka S
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424107
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of Bonding Strength on Electromigration Failure in Cu-Cu Bumps.
    Shie KC; Hsu PN; Li YJ; Tu KN; Chen C
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771919
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sintering Mechanism of a Supersaturated Ag-Cu Nanoalloy Film for Power Electronic Packaging.
    Jia Q; Zou G; Wang W; Ren H; Zhang H; Deng Z; Feng B; Liu L
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16743-16752. PubMed ID: 32174102
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Failure Mechanisms of Cu-Cu Bumps under Thermal Cycling.
    Shie KC; Hsu PN; Li YJ; Tran DP; Chen C
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639918
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigation of Low-Pressure Sn-Passivated Cu-to-Cu Direct Bonding in 3D-Integration.
    Kung PY; Huang WL; Kao CL; Lin YS; Hung YC; Kao CR
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363374
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigation of Surface Pre-Treatment Methods for Wafer-Level Cu-Cu Thermo-Compression Bonding.
    Tanaka K; Wang WS; Baum M; Froemel J; Hirano H; Tanaka S; Wiemer M; Otto T
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404406
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-catalyzed copper-silver complex inks for low-cost fabrication of highly oxidation-resistant and conductive copper-silver hybrid tracks at a low temperature below 100 °C.
    Li W; Li CF; Lang F; Jiu J; Ueshima M; Wang H; Liu ZQ; Suganuma K
    Nanoscale; 2018 Mar; 10(11):5254-5263. PubMed ID: 29498383
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of grain orientations of Cu seed layers on the growth of <111>-oriented nanotwinned Cu.
    Liu CM; Lin HW; Lu CL; Chen C
    Sci Rep; 2014 Aug; 4():6123. PubMed ID: 25134840
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ru Passivation Layer Enables Cu-Cu Direct Bonding at Low Temperatures with Oxidation Inhibition.
    Jeon C; Kang S; Kim ME; Park J; Kim D; Kim S; Kim KM
    ACS Appl Mater Interfaces; 2024 Sep; 16(36):48481-48487. PubMed ID: 39190606
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper.
    Hsiao HY; Liu CM; Lin HW; Liu TC; Lu CL; Huang YS; Chen C; Tu KN
    Science; 2012 May; 336(6084):1007-10. PubMed ID: 22628648
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Research on Wafer-Level MEMS Packaging with Through-Glass Vias.
    Yang F; Han G; Yang J; Zhang M; Ning J; Yang F; Si C
    Micromachines (Basel); 2018 Dec; 10(1):. PubMed ID: 30597830
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cu-Oxide-Assisted Selective Pyrolysis of Organic Nanolayer on Patterned SiO2-Cu Surface.
    Kayaba Y; Ono SS; Suzuki T; Tanaka H; Kohmura K
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17131-7. PubMed ID: 26200473
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Study on Nanoporous Graphene-Based Hybrid Architecture for Surface Bonding.
    Song X; Chen M; Zhang J; Zhang R; Zhang W
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889707
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low temperature Cu-Cu direct bonding in air ambient by ultrafast surface grain growth.
    Lee YF; Huang YC; Chang JS; Cheng TY; Chen PY; Huang WC; Lo MH; Fu KL; Lai TL; Chang PK; Yu ZY; Liu CY
    R Soc Open Sci; 2024 Sep; 11(9):240459. PubMed ID: 39263455
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Low-Resistance Room-Temperature Interconnection Technique for Bonding Fine Pitch Bumps.
    Roustaie F; Quednau S; Weißenborn F; Birlem O
    J Mater Eng Perform; 2021; 30(5):3173-3177. PubMed ID: 33776387
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of (111)-Oriented Nanotwinned Au Films for Au-to-Au Direct Bonding.
    Wu JA; Huang CY; Wu WW; Chen C
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30445699
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of Cu Ion Concentration on Microstructures and Mechanical Properties of Nanotwinned Cu Foils Fabricated by Rotary Electroplating.
    Hung YW; Tran DP; Chen C
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443965
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tensile bond strengths of composites to a gold-palladium alloy after thermal cycling.
    Chang JC; Koh SH; Powers JM; Duong JH
    J Prosthet Dent; 2002 Mar; 87(3):271-6. PubMed ID: 11941353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.