These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 35269276)

  • 41. Light-Trapping Electrode for the Efficiency Enhancement of Bifacial Perovskite Solar Cells.
    Obraztsova AA; Barettin D; Furasova AD; Voroshilov PM; Auf der Maur M; Orsini A; Makarov SV
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144998
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photonic-Plasmonic Nanostructures for Solar Energy Utilization and Emerging Biosensors.
    Tran VT; Nguyen HQ; Kim YM; Ok G; Lee J
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33198391
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering.
    Zhang J; Zhu Z; Liu W; Yuan X; Qin S
    Nanoscale; 2015 Aug; 7(32):13530-6. PubMed ID: 26201255
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photon management to reduce energy loss in perovskite solar cells.
    Chen C; Zheng S; Song H
    Chem Soc Rev; 2021 Jun; 50(12):7250-7329. PubMed ID: 33977928
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical-electrical-thermal optimization of plasmon-enhanced perovskite solar cells.
    Ren H; Ren X; Niu K; Wang S; Huang Z; Wu X
    Phys Chem Chem Phys; 2020 Aug; 22(30):17068-17074. PubMed ID: 32643730
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier.
    Gan Q; Bartoli FJ; Kafafi ZH
    Adv Mater; 2013 May; 25(17):2385-96. PubMed ID: 23417974
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells.
    Zhang Y; Jia B; Gu M
    Opt Express; 2016 Mar; 24(6):A506-14. PubMed ID: 27136871
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plasmonic Nanoparticles and Nanowires: Design, Fabrication and Application in Sensing.
    Vo-Dinh T; Dhawan A; Norton SJ; Khoury CG; Wang HN; Misra V; Gerhold MD
    J Phys Chem C Nanomater Interfaces; 2010 Apr; 114(16):7480-7488. PubMed ID: 24839505
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plasmonically Engineered Textile Polymer Solar Cells for High-Performance, Wearable Photovoltaics.
    Cho SH; Lee J; Lee MJ; Kim HJ; Lee SM; Choi KC
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20864-20872. PubMed ID: 31144506
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Models of light absorption enhancement in perovskite solar cells by plasmonic nanoparticles.
    Zheng D; Pauporté T; Schwob C; Coolen L
    Exploration (Beijing); 2024 Feb; 4(1):20220146. PubMed ID: 38854487
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells.
    Zhang Y; Cai B; Jia B
    Nanomaterials (Basel); 2016 May; 6(6):. PubMed ID: 28335223
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Near-field effects and energy transfer in hybrid metal-oxide nanostructures.
    Herr U; Kuerbanjiang B; Benel C; Papageorgiou G; Goncalves M; Boneberg J; Leiderer P; Ziemann P; Marek P; Hahn H
    Beilstein J Nanotechnol; 2013; 4():306-17. PubMed ID: 23766954
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced Optical Management in Organic Solar Cells by Virtue of Square-Lattice Triple Core-Shell Nanostructures.
    Gattu Subramanyam P; Krishnaswamy N; Guha K; Iannacci J; Ude EN; Muniswamy V
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630110
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced Plasmonic Particle Trapping Using a Hybrid Structure of Nanoparticles and Nanorods.
    Lee SY; Kim HM; Park J; Kim SK; Youn JR; Song YS
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41655-41663. PubMed ID: 30404444
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Light trapping structures and plasmons synergistically enhance the photovoltaic performance of full-spectrum solar cells.
    Qiao F; Xie Y; He G; Chu H; Liu W; Chen Z
    Nanoscale; 2020 Jan; 12(3):1269-1280. PubMed ID: 31912834
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement.
    Zhou L; Yu X; Zhu J
    Nano Lett; 2014 Feb; 14(2):1093-8. PubMed ID: 24443983
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High Performance Polymer Solar Cells Using Grating Nanostructure and Plasmonic Nanoparticles.
    Elrashidi A; Elleithy K
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267687
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nonlinear Graphene Nanoplasmonics.
    Cox JD; GarcĂ­a de Abajo FJ
    Acc Chem Res; 2019 Sep; 52(9):2536-2547. PubMed ID: 31448890
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-performance perovskite solar cell using photonic-plasmonic nanostructure.
    Tooghi A; Fathi D; Eskandari M
    Sci Rep; 2020 Jul; 10(1):11248. PubMed ID: 32647193
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent Development of Plasmonic Resonance-Based Photocatalysis and Photovoltaics for Solar Utilization.
    Fan W; Leung MK
    Molecules; 2016 Feb; 21(2):. PubMed ID: 26848648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.