These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35269336)

  • 1. ZIF-67 Derived Co
    Li C; Ma D; Zhu Q
    Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of advanced zeolitic imidazolate framework derived cobalt sulfide/MXene composites as high-performance electrodes for supercapacitors.
    Luo L; Zhou Y; Yan W; Du G; Fan M; Zhao W
    J Colloid Interface Sci; 2022 Jun; 615():282-292. PubMed ID: 35144229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room temperature and aqueous synthesis of bimetallic ZIF derived CoNi layered double hydroxides and their applications in asymmetric supercapacitors.
    Tahir MU; Arshad H; Zhang H; Hou Z; Wang J; Yang C; Su X
    J Colloid Interface Sci; 2020 Nov; 579():195-204. PubMed ID: 32590160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Growth of Zeolitic Imidazolate Framework-67-derived Nanoporous Carbon@K
    Wei X; Peng H; Li Y; Yang Y; Xiao S; Peng L; Zhang Y; Xiao P
    ChemSusChem; 2018 Sep; 11(18):3167-3174. PubMed ID: 30019855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-Doped Carbon Fibers Derived from Porous Wood Fibers Encapsulated in a Zeolitic Imidazolate Framework as an Electrode Material for Supercapacitors.
    Zhang Z; Qing Y; Wang D; Li L; Wu Y
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Template Synthesis of Hybrid Porous Co
    Wei C; Liu K; Tao J; Kang X; Hou H; Cheng C; Zhang D
    Chem Asian J; 2018 Jan; 13(1):111-117. PubMed ID: 29205935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The intergrated nanostructure of bimetallic CoNi-based zeolitic imidazolate framework and carbon nanotubes as high-performance electrochemical supercapacitors.
    Zhang A; Zhang H; Hu B; Wang M; Zhang S; Jia Q; He L; Zhang Z
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1257-1267. PubMed ID: 34739989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hollow C-LDH/Co
    Li Z; Huang Y; Zhang Z; Wang J; Han X; Zhang G; Li Y
    J Colloid Interface Sci; 2021 Dec; 604():340-349. PubMed ID: 34271490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous CoSe
    Fan J; Peng Z; Chen M; Yang W; Zou H; Chen S
    Dalton Trans; 2023 May; 52(20):6782-6790. PubMed ID: 37132489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt-molybdenum selenide double-shelled hollow nanocages derived from metal-organic frameworks as high performance electrodes for hybrid supercapacitor.
    Amiri M; Saeed Hosseiny Davarani S; Ebrahim Moosavifard S; Fu YQ
    J Colloid Interface Sci; 2022 Jun; 616():141-151. PubMed ID: 35203028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical mesoporous NiCo2O4 hollow nanocubes for supercapacitors.
    Zheng C; Cao C; Chang R; Hou J; Zhai H
    Phys Chem Chem Phys; 2016 Feb; 18(8):6268-74. PubMed ID: 26853189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance asymmetric supercapacitor made of NiMoO
    Wang M; Zhang J; Yi X; Liu B; Zhao X; Liu X
    Beilstein J Nanotechnol; 2020; 11():240-251. PubMed ID: 32082963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MnO2 Nanosheets Grown on Nitrogen-Doped Hollow Carbon Shells as a High-Performance Electrode for Asymmetric Supercapacitors.
    Li L; Li R; Gai S; Ding S; He F; Zhang M; Yang P
    Chemistry; 2015 May; 21(19):7119-26. PubMed ID: 25801647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ growth of ZIF-67-derived nickel-cobalt-manganese hydroxides on 2D V
    Yu T; Li S; Zhang L; Li F; Wang J; Pan H; Zhang D
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):546-558. PubMed ID: 36179575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activated Microporous Carbon Derived from Almond Shells for High Energy Density Asymmetric Supercapacitors.
    Wu C; Yang S; Cai J; Zhang Q; Zhu Y; Zhang K
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15288-96. PubMed ID: 27253880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework.
    Salunkhe RR; Tang J; Kamachi Y; Nakato T; Kim JH; Yamauchi Y
    ACS Nano; 2015 Jun; 9(6):6288-96. PubMed ID: 25978143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ selective selenization of ZIF-derived CoSe
    Zhang Q; Liu S; Huang J; Fu H; Fan Q; Zong H; Guo H; Zhang A
    J Colloid Interface Sci; 2024 Feb; 655():273-285. PubMed ID: 37944375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of the hollow dodecahedral NiCoZn layered double hydroxide for high-performance flexible asymmetric supercapacitor.
    Lin Z; Li L; Xi C; Li X; Feng S; Wang C; Wang H; Li T; Ma Y
    J Colloid Interface Sci; 2024 Mar; 657():91-101. PubMed ID: 38035423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-Dense Zinc Ion Hybrid Supercapacitors with S, N Dual-Doped Porous Carbon Nanocube Based Cathodes.
    Gupta H; Dahiya Y; Rathore HK; Awasthi K; Kumar M; Sarkar D
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42685-42696. PubMed ID: 37653567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors.
    Han X; Tao K; Wang D; Han L
    Nanoscale; 2018 Feb; 10(6):2735-2741. PubMed ID: 29296991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.