These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35269351)

  • 1. High Purity Single Wall Carbon Nanotube by Oxygen-Containing Functional Group of Ferrocene-Derived Catalyst Precursor by Floating Catalyst Chemical Vapor Deposition.
    Moon SY; Jeon SY; Lee SH; Lee A; Kim SM
    Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Floating Fe Catalyst Formation and Effects of Hydrogen Environment in the Growth of Carbon Nanotubes.
    Lei J; Bets KV; Penev ES; Yakobson BI
    J Phys Chem Lett; 2023 May; 14(18):4266-4272. PubMed ID: 37126735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the size and the activity of Fe particles for synthesis of carbon nanotubes.
    Chee SW; Sharma R
    Micron; 2012 Nov; 43(11):1181-7. PubMed ID: 22349468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise control of the number of walls formed during carbon nanotube growth using chemical vapor deposition.
    Yang HS; Zhang L; Dong XH; Zhu WM; Zhu J; Nelson BJ; Zhang XB
    Nanotechnology; 2012 Feb; 23(6):065604. PubMed ID: 22248487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ TEM Observations on the Sulfur-Assisted Catalytic Growth of Single-Wall Carbon Nanotubes.
    Zhang L; Hou PX; Li S; Shi C; Cong HT; Liu C; Cheng HM
    J Phys Chem Lett; 2014 Apr; 5(8):1427-32. PubMed ID: 26269989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of catalytic properties of Al2O3 particles in the growth of single-walled carbon nanotubes.
    Liu H; Takagi D; Chiashi S; Chokan T; Homma Y
    J Nanosci Nanotechnol; 2010 Jun; 10(6):4068-73. PubMed ID: 20355416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Carbon Nanotubes Growth Using Nickel/Ferrocene-Hybridized Catalyst.
    Lim YD; Avramchuck AV; Grapov D; Tan CW; Tay BK; Aditya S; Labunov V
    ACS Omega; 2017 Sep; 2(9):6063-6071. PubMed ID: 31457855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile preparation of free-standing carbon nanotube arrays produced using two-step floating-ferrocene chemical vapor deposition.
    Yang X; Yuan L; Peterson VK; Minett AI; Yin Y; Harris AT
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1417-22. PubMed ID: 22311688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of the single walled carbon nanotube length with growth temperature and catalyst density by chemical vapor deposition.
    López V; Welte L; Fernández MA; Moreno-Moreno M; Gómez-Herrero J; de Pablo PJ; Zamora F
    J Nanosci Nanotechnol; 2009 May; 9(5):2830-5. PubMed ID: 19452937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of Tubular Forest-like and Other Carbon Structures Using Distinct Carbon Sources and Catalyst Concentrations.
    García BO; Kharissova OV; Dias HVR; Kharisov BI
    Recent Pat Nanotechnol; 2020; 14(2):153-162. PubMed ID: 31702524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of Supported and Unsupported Catalytic Rh Nanoparticles: Effects on Nucleation of Single-Walled Carbon Nanotubes.
    Gomez-Ballesteros JL; Balbuena PB
    Langmuir; 2017 Oct; 33(42):11109-11119. PubMed ID: 28709379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Nanotube-Quicklime Nanocomposites Prepared Using a Nickel Catalyst Supported on Calcium Oxide Derived from Carbonate Stones.
    Ibrahim R; Hussein MZ; Yusof NA; Abu Bakar F
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31480466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Catalyst Pretreatment on Carbon Nanotube Synthesis from Methane Using Thin Stainless-Steel Foil as Catalyst by Chemical Vapor Deposition Method.
    Huynh TM; Nguyen S; Nguyen NTK; Nguyen HM; Do NUP; Nguyen DC; Nguyen LH; Nguyen CV
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33379133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mössbauer Study on the Conversion of Different Iron-Based Catalysts Used in Carbon Nanotube Synthesis.
    Kořenek M; Ivanova T; Svačinová V; Mašláň M
    Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bithiophene as a Sulfur-Based Promotor for the Synthesis of Carbon Nanotubes and Carbon-Carbon Composites.
    Bogdanova AR; Krasnikov DV; Khabushev EM; Ramirez B JA; Nasibulin AG
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays.
    Boncel S; Pattinson SW; Geiser V; Shaffer MS; Koziol KK
    Beilstein J Nanotechnol; 2014; 5():219-33. PubMed ID: 24605289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of carbon nanotubes by swirled floating catalyst chemical vapour deposition method.
    Abdulkareem AS; Afolabi AS; Iyuke SE; Vz Pienaar HC
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3233-8. PubMed ID: 18019155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Synergistic Effect of a Bimetallic Catalyst for the Synthesis of Carbon Nanotube Aerogels and their Predominant Chirality.
    Moon SY; Kim WS
    Chemistry; 2019 Oct; 25(59):13635-13639. PubMed ID: 31407390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-pure single wall carbon nanotube fibres continuously spun without promoter.
    Paukner C; Koziol KK
    Sci Rep; 2014 Feb; 4():3903. PubMed ID: 24492677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.