These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 35269428)

  • 21. Systematic integration of GATA transcription factors and epigenomes via IDEAS paints the regulatory landscape of hematopoietic cells.
    Hardison RC; Zhang Y; Keller CA; Xiang G; Heuston EF; An L; Lichtenberg J; Giardine BM; Bodine D; Mahony S; Li Q; Yue F; Weiss MJ; Blobel GA; Taylor J; Hughes J; Higgs DR; Göttgens B
    IUBMB Life; 2020 Jan; 72(1):27-38. PubMed ID: 31769130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Retina Development in Vertebrates: Systems Biology Approaches to Understanding Genetic Programs: On the Contribution of Next-Generation Sequencing Methods to the Characterization of the Regulatory Networks Controlling Vertebrate Eye Development.
    Buono L; Martinez-Morales JR
    Bioessays; 2020 Apr; 42(4):e1900187. PubMed ID: 31997389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proneural gene ash1 promotes amacrine cell production in the chick retina.
    Mao W; Yan RT; Wang SZ
    Dev Neurobiol; 2009 Feb 1-15; 69(2-3):88-104. PubMed ID: 19067322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A guide to visualizing the spatial epigenome with super-resolution microscopy.
    Xu J; Liu Y
    FEBS J; 2019 Aug; 286(16):3095-3109. PubMed ID: 31127980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Dynamic Epigenetic Landscape of the Retina During Development, Reprogramming, and Tumorigenesis.
    Aldiri I; Xu B; Wang L; Chen X; Hiler D; Griffiths L; Valentine M; Shirinifard A; Thiagarajan S; Sablauer A; Barabas ME; Zhang J; Johnson D; Frase S; Zhou X; Easton J; Zhang J; Mardis ER; Wilson RK; Downing JR; Dyer MA;
    Neuron; 2017 May; 94(3):550-568.e10. PubMed ID: 28472656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation.
    Waki H; Nakamura M; Yamauchi T; Wakabayashi K; Yu J; Hirose-Yotsuya L; Take K; Sun W; Iwabu M; Okada-Iwabu M; Fujita T; Aoyama T; Tsutsumi S; Ueki K; Kodama T; Sakai J; Aburatani H; Kadowaki T
    PLoS Genet; 2011 Oct; 7(10):e1002311. PubMed ID: 22028663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epigenetic hallmarks of age-related macular degeneration are recapitulated in a photosensitive mouse model.
    Luu J; Kallestad L; Hoang T; Lewandowski D; Dong Z; Blackshaw S; Palczewski K
    Hum Mol Genet; 2020 Aug; 29(15):2611-2624. PubMed ID: 32691052
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic and epigenetic control of retinal development in zebrafish.
    Seritrakul P; Gross JM
    Curr Opin Neurobiol; 2019 Dec; 59():120-127. PubMed ID: 31255843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient library preparation for next-generation sequencing analysis of genome-wide epigenetic and transcriptional landscapes in embryonic stem cells.
    Kidder BL; Zhao K
    Methods Mol Biol; 2014; 1150():3-20. PubMed ID: 24743988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cis-regulatory analysis of Onecut1 expression in fate-restricted retinal progenitor cells.
    Patoori S; Jean-Charles N; Gopal A; Sulaiman S; Gopal S; Wang B; Souferi B; Emerson MM
    Neural Dev; 2020 Mar; 15(1):5. PubMed ID: 32192535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering cell identity: establishing new gene regulatory and chromatin landscapes.
    Guo C; Morris SA
    Curr Opin Genet Dev; 2017 Oct; 46():50-57. PubMed ID: 28667865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.
    Zhao MT; Shao NY; Hu S; Ma N; Srinivasan R; Jahanbani F; Lee J; Zhang SL; Snyder MP; Wu JC
    Circ Res; 2017 Nov; 121(11):1237-1250. PubMed ID: 29030344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nuclear factor one transcription factors as epigenetic regulators in cancer.
    Fane M; Harris L; Smith AG; Piper M
    Int J Cancer; 2017 Jun; 140(12):2634-2641. PubMed ID: 28076901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TP63 links chromatin remodeling and enhancer reprogramming to epidermal differentiation and squamous cell carcinoma development.
    Yi M; Tan Y; Wang L; Cai J; Li X; Zeng Z; Xiong W; Li G; Li X; Tan P; Xiang B
    Cell Mol Life Sci; 2020 Nov; 77(21):4325-4346. PubMed ID: 32447427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. OTX2 represses sister cell fate choices in the developing retina to promote photoreceptor specification.
    Ghinia Tegla MG; Buenaventura DF; Kim DY; Thakurdin C; Gonzalez KC; Emerson MM
    Elife; 2020 Apr; 9():. PubMed ID: 32347797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconstructed cell fate-regulatory programs in stem cells reveal hierarchies and key factors of neurogenesis.
    Mendoza-Parra MA; Malysheva V; Mohamed Saleem MA; Lieb M; Godel A; Gronemeyer H
    Genome Res; 2016 Nov; 26(11):1505-1519. PubMed ID: 27650846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MEK inhibition remodels the active chromatin landscape and induces SOX10 genomic recruitment in BRAF(V600E) mutant melanoma cells.
    Fufa TD; Baxter LL; Wedel JC; Gildea DE; ; Loftus SK; Pavan WJ
    Epigenetics Chromatin; 2019 Aug; 12(1):50. PubMed ID: 31399133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthetic transcription factors for cell fate reprogramming.
    Black JB; Gersbach CA
    Curr Opin Genet Dev; 2018 Oct; 52():13-21. PubMed ID: 29803990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromatin accessibility analysis reveals regulatory dynamics of developing human retina and hiPSC-derived retinal organoids.
    Xie H; Zhang W; Zhang M; Akhtar T; Li Y; Yi W; Sun X; Zuo Z; Wei M; Fang X; Yao Z; Dong K; Zhong S; Liu Q; Shen Y; Wu Q; Wang X; Zhao H; Bao J; Qu K; Xue T
    Sci Adv; 2020 Feb; 6(6):eaay5247. PubMed ID: 32083182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reprogramming amacrine and photoreceptor progenitors into retinal ganglion cells by replacing Neurod1 with Atoh7.
    Mao CA; Cho JH; Wang J; Gao Z; Pan P; Tsai WW; Frishman LJ; Klein WH
    Development; 2013 Feb; 140(3):541-51. PubMed ID: 23293286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.