BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35269542)

  • 1. Deciphering the Effect of Lysine Acetylation on the Misfolding and Aggregation of Human Tau Fragment
    Shah SJA; Zhong H; Zhang Q; Liu H
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disclosing the Mechanism of Spontaneous Aggregation and Template-Induced Misfolding of the Key Hexapeptide (PHF6) of Tau Protein Based on Molecular Dynamics Simulation.
    Liu H; Zhong H; Liu X; Zhou S; Tan S; Liu H; Yao X
    ACS Chem Neurosci; 2019 Dec; 10(12):4810-4823. PubMed ID: 31661961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The misfolding mechanism of the key fragment R3 of tau protein: a combined molecular dynamics simulation and Markov state model study.
    Liu H; Zhong H; Xu Z; Zhang Q; Shah SJA; Liu H; Yao X
    Phys Chem Chem Phys; 2020 May; 22(19):10968-10980. PubMed ID: 32392276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Insights into the Differential Effects of Acetylation on the Aggregation of Tau Microtubule-Binding Repeats.
    Zou Y; Guan L; Tan J; Qi B; Sun Y; Huang F; Zhang Q
    J Chem Inf Model; 2024 Apr; 64(8):3386-3399. PubMed ID: 38489841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Aggregation Mechanism of Acetylated PHF6* and PHF6 Tau Peptides Based on Molecular Dynamics Simulations and Markov State Modeling.
    Shah SJA; Zhang Q; Guo J; Liu H; Liu H; Villà-Freixa J
    ACS Chem Neurosci; 2023 Nov; 14(21):3959-3971. PubMed ID: 37830541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Mechanism of Tau Misfolding and Aggregation: Insights from Molecular Dynamics Simulation.
    Zhong H; Liu H; Liu H
    Curr Med Chem; 2024; 31(20):2855-2871. PubMed ID: 37031392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylated tau, a novel pathological signature in Alzheimer's disease and other tauopathies.
    Irwin DJ; Cohen TJ; Grossman M; Arnold SE; Xie SX; Lee VM; Trojanowski JQ
    Brain; 2012 Mar; 135(Pt 3):807-18. PubMed ID: 22366796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disease-associated patterns of acetylation stabilize tau fibril formation.
    Li L; Nguyen BA; Mullapudi V; Li Y; Saelices L; Joachimiak LA
    Structure; 2023 Sep; 31(9):1025-1037.e4. PubMed ID: 37348495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Tracks of the Aggregation Mechanism of the PHF6 Peptide from Tau Protein: Molecular Dynamics, Energy, and Interaction Network Investigations.
    Fagnen C; Giovannini J; Catto M; Voisin-Chiret AS; Sopkova-de Oliveira Santos J
    ACS Chem Neurosci; 2022 Oct; 13(19):2874-2887. PubMed ID: 36153969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tau K321/K353 pseudoacetylation within KXGS motifs regulates tau-microtubule interactions and inhibits aggregation.
    Xia Y; Bell BM; Giasson BI
    Sci Rep; 2021 Aug; 11(1):17069. PubMed ID: 34426645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An acetylation mimicking mutation, K274Q, in tau imparts neurotoxicity by enhancing tau aggregation and inhibiting tubulin polymerization.
    Rane JS; Kumari A; Panda D
    Biochem J; 2019 May; 476(10):1401-1417. PubMed ID: 31036717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An acetylation-phosphorylation switch that regulates tau aggregation propensity and function.
    Carlomagno Y; Chung DC; Yue M; Castanedes-Casey M; Madden BJ; Dunmore J; Tong J; DeTure M; Dickson DW; Petrucelli L; Cook C
    J Biol Chem; 2017 Sep; 292(37):15277-15286. PubMed ID: 28760828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncovering the Effect of pS202/pT205/pS208 Triple Phosphorylations on the Conformational Features of the Key Fragment G192-T212 of Tau Protein.
    Liu H; Li Q; Xiong C; Zhong H; Zhang Q; Liu H; Yao X
    ACS Chem Neurosci; 2021 Mar; 12(6):1039-1048. PubMed ID: 33663205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the Influence of K280 Acetylation on the Conformational Features of Tau Core Fragment: A Molecular Dynamics Simulation Study.
    Zou Y; Guan L
    Front Mol Biosci; 2021; 8():801577. PubMed ID: 34966788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge neutralization of lysine via carbamylation reveals hidden aggregation hot-spots in tau protein flanking regions.
    Gadhavi J; Shah S; Sinha T; Jain A; Gupta S
    FEBS J; 2022 May; 289(9):2562-2577. PubMed ID: 34796642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylation discriminates disease-specific tau deposition.
    Chakraborty P; Rivière G; Hebestreit A; de Opakua AI; Vorberg IM; Andreas LB; Zweckstetter M
    Nat Commun; 2023 Sep; 14(1):5919. PubMed ID: 37739953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomistic Insights into the Inhibitory Mechanism of Tyrosine Phosphorylation against the Aggregation of Human Tau Fragment PHF6.
    Zou Y; Guan L; Tan J; Qi B; Wang Y; Zhang Q; Sun Y
    J Phys Chem B; 2023 Jan; 127(1):335-345. PubMed ID: 36594671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disease-associated patterns of acetylation stabilize tau fibril formation.
    Li L; Nguyen B; Mullapudi V; Saelices L; Joachimiak LA
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation.
    Cohen TJ; Constance BH; Hwang AW; James M; Yuan CX
    PLoS One; 2016; 11(7):e0158470. PubMed ID: 27383765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The microtubule-associated tau protein has intrinsic acetyltransferase activity.
    Cohen TJ; Friedmann D; Hwang AW; Marmorstein R; Lee VM
    Nat Struct Mol Biol; 2013 Jun; 20(6):756-62. PubMed ID: 23624859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.