These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 3526971)

  • 21. Activity staining on polyacrylamide gels of trypsin inhibitors from leaves of sweet potato (Ipomoea batatas L. Lam) varieties.
    Hou WC; Lin YH
    Electrophoresis; 1998 Feb; 19(2):212-4. PubMed ID: 9548281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cleavage of phycocyanobilin from C-phycocyanin.
    Chapman DJ; Cole WJ; Siegelman HW
    Biochim Biophys Acta; 1968 Apr; 153(3):692-8. PubMed ID: 4297064
    [No Abstract]   [Full Text] [Related]  

  • 23. Comparison of phycoerythrins (542, 566nm) from cryptophycean algae.
    Brooks C; Gantt E
    Arch Mikrobiol; 1973; 88(3):193-204. PubMed ID: 4684296
    [No Abstract]   [Full Text] [Related]  

  • 24. Subunit structure of the phycobiliproteins of blue-green algae.
    Glazer AN; Cohen-Bazire G
    Proc Natl Acad Sci U S A; 1971 Jul; 68(7):1398-401. PubMed ID: 4997755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy transfer in an ANS-phycocyanin complex.
    Binder A; Deranleau DA; Zuber H
    FEBS Lett; 1972 Jun; 23(2):185-7. PubMed ID: 4628858
    [No Abstract]   [Full Text] [Related]  

  • 26. A new method for the detection of proteolytic activity in Pseudomonas lundensis after sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
    Lundy FT; Magee AC; Blair IS; McDowell DA
    Electrophoresis; 1995 Jan; 16(1):43-5. PubMed ID: 7737090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The resolution between two native proteins and between their sodium dodecyl sulfate-complexes in agarose and polyacrylamide gel electrophoresis.
    Chen N; Chrambach A
    Electrophoresis; 1997 Jun; 18(7):1126-32. PubMed ID: 9237567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli.
    Mukougawa K; Kanamoto H; Kobayashi T; Yokota A; Kohchi T
    FEBS Lett; 2006 Feb; 580(5):1333-8. PubMed ID: 16458890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of the chromophore in the biological photoreceptor phytochrome: an approach using chemically synthesized tetrapyrroles.
    Bongards C; Gärtner W
    Acc Chem Res; 2010 Apr; 43(4):485-95. PubMed ID: 20055450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biliprotein light-harvesting strategies, phycoerythrin 566.
    MacColl R; Guard-Friar D; Ryan TJ
    Biochemistry; 1990 Jan; 29(2):430-5. PubMed ID: 2302383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. S-pyridylethylation of intact polyacrylamide gels and in situ digestion of electrophoretically separated proteins: a rapid mass spectrometric method for identifying cysteine-containing peptides.
    Moritz RL; Eddes JS; Reid GE; Simpson RJ
    Electrophoresis; 1996 May; 17(5):907-17. PubMed ID: 8783016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins.
    Lamparter T; Michael N
    Biochemistry; 2005 Jun; 44(23):8461-9. PubMed ID: 15938635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production and separation of peptides from proteins stained with Coomassie brilliant blue R-250 after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
    Kawasaki H; Emori Y; Suzuki K
    Anal Biochem; 1990 Dec; 191(2):332-6. PubMed ID: 1707597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phycocyanin 645. The chromophore assay of phycocyanin 645 from the cryptomonad protozoa Chroomonas species.
    MacColl R; Guard-Friar D
    J Biol Chem; 1983 Dec; 258(23):14327-9. PubMed ID: 6643482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. X-ray radiation induces deprotonation of the bilin chromophore in crystalline D. radiodurans phytochrome.
    Li F; Burgie ES; Yu T; Héroux A; Schatz GC; Vierstra RD; Orville AM
    J Am Chem Soc; 2015 Mar; 137(8):2792-5. PubMed ID: 25650486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined alcian blue and silver staining of subnanogram quantities of proteoglycans and glycosaminoglycans in sodium dodecyl sulfate-polyacrylamide gels.
    Møller HJ; Heinegård D; Poulsen JH
    Anal Biochem; 1993 Feb; 209(1):169-75. PubMed ID: 8465952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Core substructure in cyanobacterial phycobilisomes.
    Gingrich JC; Lundell DJ; Glazer AN
    J Cell Biochem; 1983; 22(1):1-14. PubMed ID: 6421826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of Neuhoff's optimized Coomassie brilliant blue G-250/ammonium sulfate/phosphoric acid protein staining to ultrathin polyacrylamide gels on polyester films.
    Peisker K
    Electrophoresis; 1988 May; 9(5):236-8. PubMed ID: 2466657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence detection and quantitation of recombinant proteins containing oligohistidine tag sequences directly in sodium dodecyl sulfate-polyacrylamide gels.
    Hart C; Schulenberg B; Diwu Z; Leung WY; Patton WF
    Electrophoresis; 2003 Feb; 24(4):599-610. PubMed ID: 12601727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A method for in-gel fluorescent visualization of proteins after native and sodium dodecyl sulfate polyacrylamide gel electrophoresis.
    Pristov JB; Opačić M; Dimitrijević M; Babić N; Spasojević I
    Anal Biochem; 2015 Jul; 480():6-10. PubMed ID: 25862081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.