BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35269755)

  • 1. Better Agreement of Human Transcriptomic and Proteomic Cancer Expression Data at the Molecular Pathway Activation Level.
    Raevskiy M; Sorokin M; Zakharova G; Tkachev V; Borisov N; Kuzmin D; Kremenchutckaya K; Gudkov A; Kamashev D; Buzdin A
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction.
    Wang J; Ma Z; Carr SA; Mertins P; Zhang H; Zhang Z; Chan DW; Ellis MJ; Townsend RR; Smith RD; McDermott JE; Chen X; Paulovich AG; Boja ES; Mesri M; Kinsinger CR; Rodriguez H; Rodland KD; Liebler DC; Zhang B
    Mol Cell Proteomics; 2017 Jan; 16(1):121-134. PubMed ID: 27836980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass-spectrometry-based proteomic correlates of grade and stage reveal pathways and kinases associated with aggressive human cancers.
    Monsivais D; Vasquez YM; Chen F; Zhang Y; Chandrashekar DS; Faver JC; Masand RP; Scheurer ME; Varambally S; Matzuk MM; Creighton CJ
    Oncogene; 2021 Mar; 40(11):2081-2095. PubMed ID: 33627787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration and Analysis of CPTAC Proteomics Data in the Context of Cancer Genomics in the cBioPortal.
    Wu P; Heins ZJ; Muller JT; Katsnelson L; de Bruijn I; Abeshouse AA; Schultz N; Fenyö D; Gao J
    Mol Cell Proteomics; 2019 Sep; 18(9):1893-1898. PubMed ID: 31308250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CPTAC Data Portal: A Resource for Cancer Proteomics Research.
    Edwards NJ; Oberti M; Thangudu RR; Cai S; McGarvey PB; Jacob S; Madhavan S; Ketchum KA
    J Proteome Res; 2015 Jun; 14(6):2707-13. PubMed ID: 25873244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Description of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) Common Data Analysis Pipeline.
    Rudnick PA; Markey SP; Roth J; Mirokhin Y; Yan X; Tchekhovskoi DV; Edwards NJ; Thangudu RR; Ketchum KA; Kinsinger CR; Mesri M; Rodriguez H; Stein SE
    J Proteome Res; 2016 Mar; 15(3):1023-32. PubMed ID: 26860878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UALCAN: An update to the integrated cancer data analysis platform.
    Chandrashekar DS; Karthikeyan SK; Korla PK; Patel H; Shovon AR; Athar M; Netto GJ; Qin ZS; Kumar S; Manne U; Creighton CJ; Varambally S
    Neoplasia; 2022 Mar; 25():18-27. PubMed ID: 35078134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts.
    Tabb DL; Wang X; Carr SA; Clauser KR; Mertins P; Chambers MC; Holman JD; Wang J; Zhang B; Zimmerman LJ; Chen X; Gunawardena HP; Davies SR; Ellis MJ; Li S; Townsend RR; Boja ES; Ketchum KA; Kinsinger CR; Mesri M; Rodriguez H; Liu T; Kim S; McDermott JE; Payne SH; Petyuk VA; Rodland KD; Smith RD; Yang F; Chan DW; Zhang B; Zhang H; Zhang Z; Zhou JY; Liebler DC
    J Proteome Res; 2016 Mar; 15(3):691-706. PubMed ID: 26653538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LinkedOmics: analyzing multi-omics data within and across 32 cancer types.
    Vasaikar SV; Straub P; Wang J; Zhang B
    Nucleic Acids Res; 2018 Jan; 46(D1):D956-D963. PubMed ID: 29136207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated proteotranscriptomics of breast cancer reveals globally increased protein-mRNA concordance associated with subtypes and survival.
    Tang W; Zhou M; Dorsey TH; Prieto DA; Wang XW; Ruppin E; Veenstra TD; Ambs S
    Genome Med; 2018 Dec; 10(1):94. PubMed ID: 30501643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of breast tumors confirms the mRNA intrinsic molecular subtypes using different classifiers: a large-scale analysis of fresh frozen tissue samples.
    Waldemarson S; Kurbasic E; Krogh M; Cifani P; Berggård T; Borg Å; James P
    Breast Cancer Res; 2016 Jun; 18(1):69. PubMed ID: 27357824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated quantitative proteomic and transcriptomic analysis of lung tumor and control tissue: a lung cancer showcase.
    Tenzer S; Leidinger P; Backes C; Huwer H; Hildebrandt A; Lenhof HP; Wesse T; Franke A; Meese E; Keller A
    Oncotarget; 2016 Mar; 7(12):14857-70. PubMed ID: 26930711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using proteomic and transcriptomic data to assess activation of intracellular molecular pathways.
    Buzdin A; Tkachev V; Zolotovskaia M; Garazha A; Moshkovskii S; Borisov N; Gaifullin N; Sorokin M; Suntsova M
    Adv Protein Chem Struct Biol; 2021; 127():1-53. PubMed ID: 34340765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of Proteomics and Transcriptomics Data Sets for the Analysis of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome Project.
    Díez P; Droste C; Dégano RM; González-Muñoz M; Ibarrola N; Pérez-Andrés M; Garin-Muga A; Segura V; Marko-Varga G; LaBaer J; Orfao A; Corrales FJ; De Las Rivas J; Fuentes M
    J Proteome Res; 2015 Sep; 14(9):3530-40. PubMed ID: 26216070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential analysis of transcript expression patterns improves survival prediction in multiple cancers.
    Mandel J; Avula R; Prochownik EV
    BMC Cancer; 2020 Apr; 20(1):297. PubMed ID: 32264880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Prognostic Biomarkers for Glioblastoma Based on Transcriptome and Proteome Association Analysis.
    Wang J; Yan S; Chen X; Wang A; Han Z; Liu B; Shen H
    Technol Cancer Res Treat; 2022; 21():15330338211035270. PubMed ID: 35538679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinformatics Analysis of Global Proteomic and Phosphoproteomic Data Sets Revealed Activation of NEK2 and AURKA in Cancers.
    Deb B; Sengupta P; Sambath J; Kumar P
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32033228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Annotation of the zebrafish genome through an integrated transcriptomic and proteomic analysis.
    Kelkar DS; Provost E; Chaerkady R; Muthusamy B; Manda SS; Subbannayya T; Selvan LD; Wang CH; Datta KK; Woo S; Dwivedi SB; Renuse S; Getnet D; Huang TC; Kim MS; Pinto SM; Mitchell CJ; Madugundu AK; Kumar P; Sharma J; Advani J; Dey G; Balakrishnan L; Syed N; Nanjappa V; Subbannayya Y; Goel R; Prasad TS; Bafna V; Sirdeshmukh R; Gowda H; Wang C; Leach SD; Pandey A
    Mol Cell Proteomics; 2014 Nov; 13(11):3184-98. PubMed ID: 25060758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pan-cancer molecular subtypes revealed by mass-spectrometry-based proteomic characterization of more than 500 human cancers.
    Chen F; Chandrashekar DS; Varambally S; Creighton CJ
    Nat Commun; 2019 Dec; 10(1):5679. PubMed ID: 31831737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of transcriptomic and proteomic data identifies biological functions in cell populations from human infant lung.
    Du Y; Clair GC; Al Alam D; Danopoulos S; Schnell D; Kitzmiller JA; Misra RS; Bhattacharya S; Warburton D; Mariani TJ; Pryhuber GS; Whitsett JA; Ansong C; Xu Y
    Am J Physiol Lung Cell Mol Physiol; 2019 Sep; 317(3):L347-L360. PubMed ID: 31268347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.