These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 35269762)
121. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Pillon NJ; Gabriel BM; Dollet L; Smith JAB; Sardón Puig L; Botella J; Bishop DJ; Krook A; Zierath JR Nat Commun; 2020 Jan; 11(1):470. PubMed ID: 31980607 [TBL] [Abstract][Full Text] [Related]
122. Effect of a Single Bout of Exercise on Autophagy Regulation in Skeletal Muscle of High-Fat High-Sucrose Diet-Fed Mice. Zhang D; Lee JH; Kwak SE; Shin HE; Zhang Y; Moon HY; Shin DM; Seong JK; Tang L; Song W J Obes Metab Syndr; 2019 Sep; 28(3):175-185. PubMed ID: 31583382 [TBL] [Abstract][Full Text] [Related]
123. Manipulating graded exercise test variables affects the validity of the lactate threshold and [Formula: see text]. Jamnick NA; Botella J; Pyne DB; Bishop DJ PLoS One; 2018; 13(7):e0199794. PubMed ID: 30059543 [TBL] [Abstract][Full Text] [Related]
124. An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research. Kuang J; Yan X; Genders AJ; Granata C; Bishop DJ PLoS One; 2018; 13(5):e0196438. PubMed ID: 29746477 [TBL] [Abstract][Full Text] [Related]
125. Exercise and exercise training-induced increase in autophagy markers in human skeletal muscle. Brandt N; Gunnarsson TP; Bangsbo J; Pilegaard H Physiol Rep; 2018 Apr; 6(7):e13651. PubMed ID: 29626392 [TBL] [Abstract][Full Text] [Related]
126. System-wide Benefits of Intermeal Fasting by Autophagy. Martinez-Lopez N; Tarabra E; Toledo M; Garcia-Macia M; Sahu S; Coletto L; Batista-Gonzalez A; Barzilai N; Pessin JE; Schwartz GJ; Kersten S; Singh R Cell Metab; 2017 Dec; 26(6):856-871.e5. PubMed ID: 29107505 [TBL] [Abstract][Full Text] [Related]
127. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle. Brandt N; Dethlefsen MM; Bangsbo J; Pilegaard H PLoS One; 2017; 12(10):e0185993. PubMed ID: 29049322 [TBL] [Abstract][Full Text] [Related]
128. Monitoring and Measuring Autophagy. Yoshii SR; Mizushima N Int J Mol Sci; 2017 Aug; 18(9):. PubMed ID: 28846632 [TBL] [Abstract][Full Text] [Related]
129. Ulk1-mediated autophagy plays an essential role in mitochondrial remodeling and functional regeneration of skeletal muscle. Call JA; Wilson RJ; Laker RC; Zhang M; Kundu M; Yan Z Am J Physiol Cell Physiol; 2017 Jun; 312(6):C724-C732. PubMed ID: 28356270 [TBL] [Abstract][Full Text] [Related]
130. The Human Skeletal Muscle Proteome Project: a reappraisal of the current literature. Gonzalez-Freire M; Semba RD; Ubaida-Mohien C; Fabbri E; Scalzo P; Højlund K; Dufresne C; Lyashkov A; Ferrucci L J Cachexia Sarcopenia Muscle; 2017 Feb; 8(1):5-18. PubMed ID: 27897395 [TBL] [Abstract][Full Text] [Related]
131. Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. Nguyen TN; Padman BS; Usher J; Oorschot V; Ramm G; Lazarou M J Cell Biol; 2016 Dec; 215(6):857-874. PubMed ID: 27864321 [TBL] [Abstract][Full Text] [Related]
132. Intact initiation of autophagy and mitochondrial fission by acute exercise in skeletal muscle of patients with Type 2 diabetes. Kruse R; Pedersen AJ; Kristensen JM; Petersson SJ; Wojtaszewski JF; Højlund K Clin Sci (Lond); 2017 Jan; 131(1):37-47. PubMed ID: 27837193 [TBL] [Abstract][Full Text] [Related]
133. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. Granata C; Oliveira RS; Little JP; Renner K; Bishop DJ FASEB J; 2016 Oct; 30(10):3413-3423. PubMed ID: 27402675 [TBL] [Abstract][Full Text] [Related]
134. Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. Fritzen AM; Frøsig C; Jeppesen J; Jensen TE; Lundsgaard AM; Serup AK; Schjerling P; Proud CG; Richter EA; Kiens B Cell Signal; 2016 Jun; 28(6):663-74. PubMed ID: 26976209 [TBL] [Abstract][Full Text] [Related]
135. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation. Fritzen AM; Madsen AB; Kleinert M; Treebak JT; Lundsgaard AM; Jensen TE; Richter EA; Wojtaszewski J; Kiens B; Frøsig C J Physiol; 2016 Feb; 594(3):745-61. PubMed ID: 26614120 [TBL] [Abstract][Full Text] [Related]
136. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. Granata C; Oliveira RS; Little JP; Renner K; Bishop DJ FASEB J; 2016 Feb; 30(2):959-70. PubMed ID: 26572168 [TBL] [Abstract][Full Text] [Related]
137. Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation. Schwalm C; Jamart C; Benoit N; Naslain D; Prémont C; Prévet J; Van Thienen R; Deldicque L; Francaux M FASEB J; 2015 Aug; 29(8):3515-26. PubMed ID: 25957282 [TBL] [Abstract][Full Text] [Related]
138. Physical exercise increases autophagic signaling through ULK1 in human skeletal muscle. Møller AB; Vendelbo MH; Christensen B; Clasen BF; Bak AM; Jørgensen JO; Møller N; Jessen N J Appl Physiol (1985); 2015 Apr; 118(8):971-9. PubMed ID: 25678702 [TBL] [Abstract][Full Text] [Related]
139. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle. Vainshtein A; Tryon LD; Pauly M; Hood DA Am J Physiol Cell Physiol; 2015 May; 308(9):C710-9. PubMed ID: 25673772 [TBL] [Abstract][Full Text] [Related]
140. Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity. Lo Verso F; Carnio S; Vainshtein A; Sandri M Autophagy; 2014; 10(11):1883-94. PubMed ID: 25483961 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]