These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 35269785)
1. Molecular Interactions of Tannic Acid with Proteins Associated with SARS-CoV-2 Infectivity. Haddad M; Gaudreault R; Sasseville G; Nguyen PT; Wiebe H; Van De Ven T; Bourgault S; Mousseau N; Ramassamy C Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269785 [TBL] [Abstract][Full Text] [Related]
2. Corilagin and 1,3,6-Tri- Binette V; Côté S; Haddad M; Nguyen PT; Bélanger S; Bourgault S; Ramassamy C; Gaudreault R; Mousseau N Phys Chem Chem Phys; 2021 Jul; 23(27):14873-14888. PubMed ID: 34223589 [TBL] [Abstract][Full Text] [Related]
3. Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding. Yang LJ; Chen RH; Hamdoun S; Coghi P; Ng JPL; Zhang DW; Guo X; Xia C; Law BYK; Wong VKW Phytomedicine; 2021 Jul; 87():153591. PubMed ID: 34029937 [TBL] [Abstract][Full Text] [Related]
4. Geraniin Inhibits the Entry of SARS-CoV-2 by Blocking the Interaction between Spike Protein RBD and Human ACE2 Receptor. Kim YS; Chung HS; Noh SG; Lee B; Chung HY; Choi JG Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445310 [TBL] [Abstract][Full Text] [Related]
5. V367F Mutation in SARS-CoV-2 Spike RBD Emerging during the Early Transmission Phase Enhances Viral Infectivity through Increased Human ACE2 Receptor Binding Affinity. Ou J; Zhou Z; Dai R; Zhang J; Zhao S; Wu X; Lan W; Ren Y; Cui L; Lan Q; Lu L; Seto D; Chodosh J; Wu J; Zhang G; Zhang Q J Virol; 2021 Jul; 95(16):e0061721. PubMed ID: 34105996 [TBL] [Abstract][Full Text] [Related]
6. Contributions of human ACE2 and TMPRSS2 in determining host-pathogen interaction of COVID-19. Senapati S; Banerjee P; Bhagavatula S; Kushwaha PP; Kumar S J Genet; 2021; 100(1):. PubMed ID: 33707363 [TBL] [Abstract][Full Text] [Related]
7. Withanone from Balkrishna A; Pokhrel S; Singh H; Joshi M; Mulay VP; Haldar S; Varshney A Drug Des Devel Ther; 2021; 15():1111-1133. PubMed ID: 33737804 [TBL] [Abstract][Full Text] [Related]
8. The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-like protease. Chiou WC; Chen JC; Chen YT; Yang JM; Hwang LH; Lyu YS; Yang HY; Huang C Biochem Biophys Res Commun; 2022 Feb; 591():130-136. PubMed ID: 33454058 [TBL] [Abstract][Full Text] [Related]
9. Scaffold morphing of arbidol (umifenovir) in search of multi-targeting therapy halting the interaction of SARS-CoV-2 with ACE2 and other proteases involved in COVID-19. Choudhary S; Silakari O Virus Res; 2020 Nov; 289():198146. PubMed ID: 32866534 [TBL] [Abstract][Full Text] [Related]
10. SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation. Hörnich BF; Großkopf AK; Schlagowski S; Tenbusch M; Kleine-Weber H; Neipel F; Stahl-Hennig C; Hahn AS J Virol; 2021 Apr; 95(9):. PubMed ID: 33608407 [TBL] [Abstract][Full Text] [Related]
11. Multidisciplinary Approaches Identify Compounds that Bind to Human ACE2 or SARS-CoV-2 Spike Protein as Candidates to Block SARS-CoV-2-ACE2 Receptor Interactions. Day CJ; Bailly B; Guillon P; Dirr L; Jen FE; Spillings BL; Mak J; von Itzstein M; Haselhorst T; Jennings MP mBio; 2021 Mar; 12(2):. PubMed ID: 33785634 [TBL] [Abstract][Full Text] [Related]
13. Targeting the viral-entry facilitators of SARS-CoV-2 as a therapeutic strategy in COVID-19. Muralidar S; Gopal G; Visaga Ambi S J Med Virol; 2021 Sep; 93(9):5260-5276. PubMed ID: 33851732 [TBL] [Abstract][Full Text] [Related]
14. The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19. Li K; Meyerholz DK; Bartlett JA; McCray PB mBio; 2021 Aug; 12(4):e0097021. PubMed ID: 34340553 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of S-protein RBD and hACE2 Interaction for Control of SARSCoV- 2 Infection (COVID-19). Nayak SK Mini Rev Med Chem; 2021; 21(6):689-703. PubMed ID: 33208074 [TBL] [Abstract][Full Text] [Related]
16. SARS-CoV-2 pseudovirus infectivity and expression of viral entry-related factors ACE2, TMPRSS2, Kim-1, and NRP-1 in human cells from the respiratory, urinary, digestive, reproductive, and immune systems. Zhang F; Li W; Feng J; Ramos da Silva S; Ju E; Zhang H; Chang Y; Moore PS; Guo H; Gao SJ J Med Virol; 2021 Dec; 93(12):6671-6685. PubMed ID: 34324210 [TBL] [Abstract][Full Text] [Related]
17. TMPRSS11D and TMPRSS13 Activate the SARS-CoV-2 Spike Protein. Kishimoto M; Uemura K; Sanaki T; Sato A; Hall WW; Kariwa H; Orba Y; Sawa H; Sasaki M Viruses; 2021 Feb; 13(3):. PubMed ID: 33671076 [TBL] [Abstract][Full Text] [Related]
18. Identification of potential SARS-CoV-2 entry inhibitors by targeting the interface region between the spike RBD and human ACE2. Gurung AB; Ali MA; Lee J; Farah MA; Al-Anazi KM J Infect Public Health; 2021 Feb; 14(2):227-237. PubMed ID: 33493919 [TBL] [Abstract][Full Text] [Related]
19. Prevention of SARS-CoV-2 cell entry: insight from Gyebi GA; Adegunloye AP; Ibrahim IM; Ogunyemi OM; Afolabi SO; Ogunro OB J Biomol Struct Dyn; 2022 Mar; 40(5):2121-2145. PubMed ID: 33089728 [TBL] [Abstract][Full Text] [Related]
20. Tinocordiside from Balkrishna A; Pokhrel S; Varshney A Comb Chem High Throughput Screen; 2021; 24(10):1795-1802. PubMed ID: 33172372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]