These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 35269811)

  • 1. Pangenomes as a Resource to Accelerate Breeding of Under-Utilised Crop Species.
    Tay Fernandez CG; Nestor BJ; Danilevicz MF; Gill M; Petereit J; Bayer PE; Finnegan PM; Batley J; Edwards D
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pangenomics in crop improvement-from coding structural variations to finding regulatory variants with pangenome graphs.
    Zanini SF; Bayer PE; Wells R; Snowdon RJ; Batley J; Varshney RK; Nguyen HT; Edwards D; Golicz AA
    Plant Genome; 2022 Mar; 15(1):e20177. PubMed ID: 34904403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome-length genome assemblies of six legume species provide insights into genome organization, evolution, and agronomic traits for crop improvement.
    Garg V; Dudchenko O; Wang J; Khan AW; Gupta S; Kaur P; Han K; Saxena RK; Kale SM; Pham M; Yu J; Chitikineni A; Zhang Z; Fan G; Lui C; Valluri V; Meng F; Bhandari A; Liu X; Yang T; Chen H; Valliyodan B; Roorkiwal M; Shi C; Yang HB; Durand NC; Pandey MK; Li G; Barmukh R; Wang X; Chen X; Lam HM; Jiang H; Zong X; Liang X; Liu X; Liao B; Guo B; Jackson S; Nguyen HT; Zhuang W; Shubo W; Wang X; Aiden EL; Bennetzen JL; Varshney RK
    J Adv Res; 2022 Dec; 42():315-329. PubMed ID: 36513421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding Gene-Editing Potential in Crop Improvement with Pangenomes.
    Tay Fernandez CG; Nestor BJ; Danilevicz MF; Marsh JI; Petereit J; Bayer PE; Batley J; Edwards D
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph Pangenomes Track Genetic Variants for Crop Improvement.
    Hameed A; Poznanski P; Nadolska-Orczyk A; Orczyk W
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic prediction models for traits differing in heritability for soybean, rice, and maize.
    Kaler AS; Purcell LC; Beissinger T; Gillman JD
    BMC Plant Biol; 2022 Feb; 22(1):87. PubMed ID: 35219296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A super-pangenome of the North American wild grape species.
    Cochetel N; Minio A; Guarracino A; Garcia JF; Figueroa-Balderas R; Massonnet M; Kasuga T; Londo JP; Garrison E; Gaut BS; Cantu D
    Genome Biol; 2023 Dec; 24(1):290. PubMed ID: 38111050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement.
    Liu J; Fernie AR; Yan J
    Plant Commun; 2020 Jan; 1(1):100010. PubMed ID: 33404535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blurring the boundaries between cereal crops and model plants.
    Borrill P
    New Phytol; 2020 Dec; 228(6):1721-1727. PubMed ID: 31571228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide association studies of 14 agronomic traits in rice landraces.
    Huang X; Wei X; Sang T; Zhao Q; Feng Q; Zhao Y; Li C; Zhu C; Lu T; Zhang Z; Li M; Fan D; Guo Y; Wang A; Wang L; Deng L; Li W; Lu Y; Weng Q; Liu K; Huang T; Zhou T; Jing Y; Li W; Lin Z; Buckler ES; Qian Q; Zhang QF; Li J; Han B
    Nat Genet; 2010 Nov; 42(11):961-7. PubMed ID: 20972439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of CRISPR/Cas9 for Crop Improvement in Maize and Soybean.
    Chilcoat D; Liu ZB; Sander J
    Prog Mol Biol Transl Sci; 2017; 149():27-46. PubMed ID: 28712499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification and analysis of the B3 superfamily of transcription factors in Brassicaceae and major crop plants.
    Peng FY; Weselake RJ
    Theor Appl Genet; 2013 May; 126(5):1305-19. PubMed ID: 23377560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trait ontology analysis based on association mapping studies bridges the gap between crop genomics and Phenomics.
    Pan Q; Wei J; Guo F; Huang S; Gong Y; Liu H; Liu J; Li L
    BMC Genomics; 2019 Jun; 20(1):443. PubMed ID: 31159731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pangenome analysis pipeline provides insights into functional gene identification in rice.
    Wang J; Yang W; Zhang S; Hu H; Yuan Y; Dong J; Chen L; Ma Y; Yang T; Zhou L; Chen J; Liu B; Li C; Edwards D; Zhao J
    Genome Biol; 2023 Jan; 24(1):19. PubMed ID: 36703158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards plant pangenomics.
    Golicz AA; Batley J; Edwards D
    Plant Biotechnol J; 2016 Apr; 14(4):1099-105. PubMed ID: 26593040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice.
    Zhao Q; Feng Q; Lu H; Li Y; Wang A; Tian Q; Zhan Q; Lu Y; Zhang L; Huang T; Wang Y; Fan D; Zhao Y; Wang Z; Zhou C; Chen J; Zhu C; Li W; Weng Q; Xu Q; Wang ZX; Wei X; Han B; Huang X
    Nat Genet; 2018 Feb; 50(2):278-284. PubMed ID: 29335547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph pangenome captures missing heritability and empowers tomato breeding.
    Zhou Y; Zhang Z; Bao Z; Li H; Lyu Y; Zan Y; Wu Y; Cheng L; Fang Y; Wu K; Zhang J; Lyu H; Lin T; Gao Q; Saha S; Mueller L; Fei Z; Städler T; Xu S; Zhang Z; Speed D; Huang S
    Nature; 2022 Jun; 606(7914):527-534. PubMed ID: 35676474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomics of grass EST libraries reveals previously uncharacterized splicing events in crop plants.
    Chuang TJ; Yang MY; Lin CC; Hsieh PH; Hung LY
    BMC Plant Biol; 2015 Feb; 15():39. PubMed ID: 25652661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets.
    Numan M; Serba DD; Ligaba-Osena A
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34068886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pangenome of an agronomically important crop plant Brassica oleracea.
    Golicz AA; Bayer PE; Barker GC; Edger PP; Kim H; Martinez PA; Chan CK; Severn-Ellis A; McCombie WR; Parkin IA; Paterson AH; Pires JC; Sharpe AG; Tang H; Teakle GR; Town CD; Batley J; Edwards D
    Nat Commun; 2016 Nov; 7():13390. PubMed ID: 27834372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.