These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 35270036)
1. Key Soybean Seedlings Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome Analyses of Two Cultivars. Xuan H; Huang Y; Zhou L; Deng S; Wang C; Xu J; Wang H; Zhao J; Guo N; Xing H Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35270036 [TBL] [Abstract][Full Text] [Related]
2. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines. Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions. Chen LM; Zhou XA; Li WB; Chang W; Zhou R; Wang C; Sha AH; Shan ZH; Zhang CJ; Qiu DZ; Yang ZL; Chen SL BMC Genomics; 2013 Oct; 14():687. PubMed ID: 24093224 [TBL] [Abstract][Full Text] [Related]
5. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive RNA-seq analysis revealed molecular pathways and genes associated with drought tolerance in wild soybean (Glycine soja Sieb. and Zucc.). Aleem M; Raza MM; Haider MS; Atif RM; Ali Z; Bhat JA; Zhao T Physiol Plant; 2021 Jun; 172(2):707-732. PubMed ID: 32984966 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome analysis reveals regulatory mechanisms of different drought-tolerant Gleditsia sinensis seedlings under drought stress. Liu F; Zhao Y; Wang X; Wang B; Xiao F; He K BMC Genom Data; 2024 Mar; 25(1):29. PubMed ID: 38481144 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome Analysis of Tolerant and Susceptible Maize Genotypes Reveals Novel Insights about the Molecular Mechanisms Underlying Drought Responses in Leaves. Waititu JK; Zhang X; Chen T; Zhang C; Zhao Y; Wang H Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209553 [TBL] [Abstract][Full Text] [Related]
9. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. Le DT; Nishiyama R; Watanabe Y; Tanaka M; Seki M; Ham le H; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS PLoS One; 2012; 7(11):e49522. PubMed ID: 23189148 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analysis suggested that lncRNAs regulate rapeseed seedlings in responding to drought stress by coordinating the phytohormone signal transduction pathways. Tan X; Long W; Ma N; Sang S; Cai S BMC Genomics; 2024 Jul; 25(1):704. PubMed ID: 39030492 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome Profiling of Maize ( Waititu JK; Cai Q; Sun Y; Sun Y; Li C; Zhang C; Liu J; Wang H Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34681032 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome profiles identify the common responsive genes to drought stress in two Elymus species. Li MQ; Yang J; Wang X; Li DX; Zhang CB; Tian ZH; You MH; Bai SQ; Lin HH J Plant Physiol; 2020 Jul; 250():153183. PubMed ID: 32422512 [TBL] [Abstract][Full Text] [Related]
13. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars. Hussain RM; Ali M; Feng X; Li X BMC Plant Biol; 2017 Feb; 17(1):55. PubMed ID: 28241800 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive Analysis of Rice Seedling Transcriptome during Dehydration and Rehydration. Park SY; Jeong DH Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176147 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome Profiling, Biochemical and Physiological Analyses Provide New Insights towards Drought Tolerance in Khan R; Zhou P; Ma X; Zhou L; Wu Y; Ullah Z; Wang S Genes (Basel); 2019 Dec; 10(12):. PubMed ID: 31847498 [TBL] [Abstract][Full Text] [Related]
16. Gene Co-Expression Analysis Reveals Transcriptome Divergence between Wild and Cultivated Sugarcane under Drought Stress. Li P; Lin P; Zhao Z; Li Z; Liu Y; Huang C; Huang G; Xu L; Deng Z; Zhang Y; Zhao X Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008994 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic and Metabolomic Analysis of Seedling-Stage Soybean Responses to PEG-Simulated Drought Stress. Wang X; Song S; Wang X; Liu J; Dong S Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743316 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [Pennisetum glaucum (L.) R. Br]. Dudhate A; Shinde H; Tsugama D; Liu S; Takano T PLoS One; 2018; 13(4):e0195908. PubMed ID: 29652907 [TBL] [Abstract][Full Text] [Related]