BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35270143)

  • 1. Seasonal Changes in the Plant Growth-Inhibitory Effects of Rosemary Leaves on Lettuce Seedlings.
    Appiah KS; Omari RA; Onwona-Agyeman S; Amoatey CA; Ofosu-Anim J; Smaoui A; Arfa AB; Suzuki Y; Oikawa Y; Okazaki S; Katsura K; Isoda H; Kawada K; Fujii Y
    Plants (Basel); 2022 Mar; 11(5):. PubMed ID: 35270143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of Carnosic Acid in the Phytotoxicity of
    Appiah KS; Mardani HK; Omari RA; Eziah VY; Ofosu-Anim J; Onwona-Agyeman S; Amoatey CA; Kawada K; Katsura K; Oikawa Y; Fujii Y
    Toxins (Basel); 2018 Nov; 10(12):. PubMed ID: 30486296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rosemary (
    de Macedo LM; Santos ÉMD; Militão L; Tundisi LL; Ataide JA; Souto EB; Mazzola PG
    Plants (Basel); 2020 May; 9(5):. PubMed ID: 32455585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Priming crop plants with rosemary (Salvia rosmarinus Spenn, syn Rosmarinus officinalis L.) extract triggers protective defense response against pathogens.
    Martin AP; Martínez MF; Chiesa MA; Garcia L; Gerhardt N; Uviedo F; Torres PS; Marano MR
    Plant Physiol Biochem; 2023 Apr; 197():107644. PubMed ID: 36996636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaccessibility and inhibitory effects on digestive enzymes of carnosic acid in sage and rosemary.
    Ercan P; El SN
    Int J Biol Macromol; 2018 Aug; 115():933-939. PubMed ID: 29709538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular compartmentation of the diterpene carnosic acid and its derivatives in the leaves of rosemary.
    Munné-Bosch S; Alegre L
    Plant Physiol; 2001 Feb; 125(2):1094-102. PubMed ID: 11161064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Within-Plant Variation in
    Bellumori M; Innocenti M; Congiu F; Cencetti G; Raio A; Menicucci F; Mulinacci N; Michelozzi M
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34198771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, purification and characterisation of transglutaminase from rosemary (Rosmarinus officinalis L.) leaves.
    El-Hofi M; Ismail A; Nour M; Ibrahim O
    Acta Sci Pol Technol Aliment; 2014; 13(3):267-78. PubMed ID: 24887942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid quantitative enrichment of carnosic acid from rosemary (Rosmarinus officinalis L.) by isoelectric focused adsorptive bubble chromatography.
    Backleh M; Leupold G; Parlar H
    J Agric Food Chem; 2003 Feb; 51(5):1297-301. PubMed ID: 12590472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Validated Method for the Determination of Carnosic Acid and Carnosol in the Fresh Foliage of Salvia rosmarinus and Salvia officinalis from Greece.
    Paloukopoulou C; Karioti A
    Plants (Basel); 2022 Nov; 11(22):. PubMed ID: 36432835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of carnosic acid from rosemary extracts using semi-preparative supercritical fluid chromatography.
    Vicente G; García-Risco MR; Fornari T; Reglero G
    J Chromatogr A; 2013 Apr; 1286():208-15. PubMed ID: 23497854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant activities of rosemary (Rosmarinus Officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol.
    Erkan N; Ayranci G; Ayranci E
    Food Chem; 2008 Sep; 110(1):76-82. PubMed ID: 26050168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comprehensive Characterisation of Rosemary tea Obtained from Rosmarinus officinalis L. Collected in a sub-Humid Area of Tunisia.
    Achour M; Mateos R; Ben Fredj M; Mtiraoui A; Bravo L; Saguem S
    Phytochem Anal; 2018 Jan; 29(1):87-100. PubMed ID: 28895237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carnosic Acid Content Increased by Silver Nanoparticle Treatment in Rosemary (Rosmarinus officinalis L.).
    Hadi Soltanabad M; Bagherieh-Najjar MB; Mianabadi M
    Appl Biochem Biotechnol; 2020 Jun; 191(2):482-495. PubMed ID: 31797151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant activities from different rosemary clonal lines.
    Ban L; Narasimhamoorthy B; Zhao L; Greaves JA; Schroeder WD
    Food Chem; 2016 Jun; 201():259-63. PubMed ID: 26868574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective extraction and stabilization of bioactive compounds from rosemary leaves using a biphasic NADES.
    Vieira C; Rebocho S; Craveiro R; Paiva A; Duarte ARC
    Front Chem; 2022; 10():954835. PubMed ID: 36034659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carnosic acid, a component of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells.
    Kosaka K; Yokoi T
    Biol Pharm Bull; 2003 Nov; 26(11):1620-2. PubMed ID: 14600414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relevance of carnosic acid concentrations to the selection of rosemary, Rosmarinus officinalis (L.), accessions for optimization of antioxidant yield.
    Wellwood CR; Cole RA
    J Agric Food Chem; 2004 Oct; 52(20):6101-7. PubMed ID: 15453673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC.
    Zhang Y; Smuts JP; Dodbiba E; Rangarajan R; Lang JC; Armstrong DW
    J Agric Food Chem; 2012 Sep; 60(36):9305-14. PubMed ID: 22881034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-inflammatory effects of supercritical carbon dioxide extract and its isolated carnosic acid from Rosmarinus officinalis leaves.
    Kuo CF; Su JD; Chiu CH; Peng CC; Chang CH; Sung TY; Huang SH; Lee WC; Chyau CC
    J Agric Food Chem; 2011 Apr; 59(8):3674-85. PubMed ID: 21375325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.