These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35270180)

  • 1. Genome-Wide Identification and Expression Analysis of SNARE Genes in
    Xu J; Zhao X; Bao J; Shan Y; Zhang M; Shen Y; Abubakar YS; Lu G; Wang Z; Wang A
    Plants (Basel); 2022 Mar; 11(5):. PubMed ID: 35270180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brassica napus Genome Possesses Extraordinary High Number of CAMTA Genes and CAMTA3 Contributes to PAMP Triggered Immunity and Resistance to Sclerotinia sclerotiorum.
    Rahman H; Xu YP; Zhang XR; Cai XZ
    Front Plant Sci; 2016; 7():581. PubMed ID: 27200054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Identification of GYF-Domain Encoding Genes in Three
    Zhang X; Qin L; Lu J; Xia Y; Tang X; Lu X; Xia S
    Genes (Basel); 2023 Jan; 14(1):. PubMed ID: 36672966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum - reassessing the role of salicylic acid in the interaction with a necrotroph.
    Nováková M; Sašek V; Dobrev PI; Valentová O; Burketová L
    Plant Physiol Biochem; 2014 Jul; 80():308-17. PubMed ID: 24837830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification and functional analysis of cupin_1 domain-containing members involved in the responses to
    He Y; Li Y; Bai Z; Xie M; Zuo R; Liu J; Xia J; Cheng X; Liu Y; Tong C; Zhang Y; Liu S
    Front Plant Sci; 2022; 13():983786. PubMed ID: 35979083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide identification and functional analysis of the TIFY gene family in the response to multiple stresses in Brassica napus L.
    He X; Kang Y; Li W; Liu W; Xie P; Liao L; Huang L; Yao M; Qian L; Liu Z; Guan C; Guan M; Hua W
    BMC Genomics; 2020 Oct; 21(1):736. PubMed ID: 33092535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Structures and Evolution Analysis of
    Wang L; Liu F; Ju L; Xue B; Wang Y; Wang D; Hou D
    Front Plant Sci; 2022; 13():854034. PubMed ID: 35463405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of the G-box regulating factors protein family reveals its roles in response to
    Sun Q; Xi Y; Lu P; Lu Y; Wang Y; Wang Y
    Front Plant Sci; 2022; 13():986635. PubMed ID: 36035692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Wide Identification and Functional Prediction of Long Non-Coding RNAs Responsive to Sclerotinia sclerotiorum Infection in Brassica napus.
    Joshi RK; Megha S; Basu U; Rahman MH; Kav NN
    PLoS One; 2016; 11(7):e0158784. PubMed ID: 27388760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level.
    Cao JY; Xu YP; Zhao L; Li SS; Cai XZ
    Plant Mol Biol; 2016 Sep; 92(1-2):39-55. PubMed ID: 27325118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus.
    Seifbarghi S; Borhan MH; Wei Y; Coutu C; Robinson SJ; Hegedus DD
    BMC Genomics; 2017 Mar; 18(1):266. PubMed ID: 28356071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum.
    Rietz S; Bernsdorff FE; Cai D
    J Exp Bot; 2012 Sep; 63(15):5507-19. PubMed ID: 22888126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome Analysis Reveals the Complex Molecular Mechanisms of
    Xu B; Gong X; Chen S; Hu M; Zhang J; Peng Q
    Front Plant Sci; 2021; 12():716935. PubMed ID: 34691098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Wide Identification of Dicer-Like, Argonaute, and RNA-Dependent RNA Polymerase Gene Families in
    Cao JY; Xu YP; Li W; Li SS; Rahman H; Cai XZ
    Front Plant Sci; 2016; 7():1614. PubMed ID: 27833632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BnaMPK6 is a determinant of quantitative disease resistance against Sclerotinia sclerotiorum in oilseed rape.
    Wang Z; Zhao FY; Tang MQ; Chen T; Bao LL; Cao J; Li YL; Yang YH; Zhu KM; Liu S; Tan XL
    Plant Sci; 2020 Feb; 291():110362. PubMed ID: 31928657
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Wang Z; Bao LL; Zhao FY; Tang MQ; Chen T; Li Y; Wang BX; Fu B; Fang H; Li GY; Cao J; Ding LN; Zhu KM; Liu SY; Tan XL
    Front Plant Sci; 2019; 10():91. PubMed ID: 30800136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus.
    Ding LN; Li M; Guo XJ; Tang MQ; Cao J; Wang Z; Liu R; Zhu KM; Guo L; Liu SY; Tan XL
    Plant Biotechnol J; 2020 May; 18(5):1255-1270. PubMed ID: 31693306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum.
    Wang Z; Fang H; Chen Y; Chen K; Li G; Gu S; Tan X
    Mol Plant Pathol; 2014 Sep; 15(7):677-89. PubMed ID: 24521393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide Identification of Rapid Alkalinization Factor Family in
    He YH; Zhang ZR; Xu YP; Chen SY; Cai XZ
    Front Plant Sci; 2022; 13():877404. PubMed ID: 35592581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.