These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 35270180)

  • 21. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments.
    Yang B; Jiang Y; Rahman MH; Deyholos MK; Kav NN
    BMC Plant Biol; 2009 Jun; 9():68. PubMed ID: 19493335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide identification of the pectin methylesterase inhibitor genes in
    Wang D; Jin S; Chen Z; Shan Y; Li L
    Front Plant Sci; 2022; 13():940284. PubMed ID: 35937343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus.
    Zhao J; Wang J; An L; Doerge RW; Chen ZJ; Grau CR; Meng J; Osborn TC
    Planta; 2007 Dec; 227(1):13-24. PubMed ID: 17665211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of receptor-like proteins induced by
    Li W; Lu J; Yang C; Xia S
    Front Plant Sci; 2022; 13():944763. PubMed ID: 36061811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.
    Joshi RK; Megha S; Rahman MH; Basu U; Kav NN
    Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution and functional diversity of lipoxygenase (LOX) genes in allotetraploid rapeseed (Brassica napus L.).
    Kang Y; Liu W; Guan C; Guan M; He X
    Int J Biol Macromol; 2021 Oct; 188():844-854. PubMed ID: 34416264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus.
    Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y
    Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential Alternative Splicing Genes and Isoform Regulation Networks of Rapeseed (
    Ma JQ; Xu W; Xu F; Lin A; Sun W; Jiang HH; Lu K; Li JN; Wei LJ
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32668742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exogenous application of methyl jasmonate induces a defense response and resistance against Sclerotinia sclerotiorum in dry bean plants.
    Oliveira MB; Junior ML; Grossi-de-Sá MF; Petrofeza S
    J Plant Physiol; 2015 Jun; 182():13-22. PubMed ID: 26037694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling.
    Wang Z; Tan X; Zhang Z; Gu S; Li G; Shi H
    Plant Sci; 2012 Mar; 184():75-82. PubMed ID: 22284712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptome analysis of the plant pathogen Sclerotinia sclerotiorum interaction with resistant and susceptible canola (Brassica napus) lines.
    Chittem K; Yajima WR; Goswami RS; Del Río Mendoza LE
    PLoS One; 2020; 15(3):e0229844. PubMed ID: 32160211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide identification and functional exploration of the legume lectin genes in
    Zuo R; Xie M; Gao F; Liu J; Tang M; Cheng X; Liu Y; Bai Z; Liu S
    Front Plant Sci; 2022; 13():963263. PubMed ID: 35968144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MYB43 in Oilseed Rape (
    Jiang J; Liao X; Jin X; Tan L; Lu Q; Yuan C; Xue Y; Yin N; Lin N; Chai Y
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32455973
    [No Abstract]   [Full Text] [Related]  

  • 34. Alternative splicing reprogramming in fungal pathogen
    Cheng X; Zhao C; Gao L; Zeng L; Xu Y; Liu F; Huang J; Liu L; Liu S; Zhang X
    Front Plant Sci; 2022; 13():1008665. PubMed ID: 36311105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus.
    Wei L; Jian H; Lu K; Filardo F; Yin N; Liu L; Qu C; Li W; Du H; Li J
    Plant Biotechnol J; 2016 Jun; 14(6):1368-80. PubMed ID: 26563848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment.
    Hegedus DD; Li R; Buchwaldt L; Parkin I; Whitwill S; Coutu C; Bekkaoui D; Rimmer SR
    Planta; 2008 Jul; 228(2):241-53. PubMed ID: 18431596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape.
    Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S
    Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. fIdentification of B. napus small RNAs responsive to infection by a necrotrophic pathogen.
    Regmi R; Newman TE; Kamphuis LG; Derbyshire MC
    BMC Plant Biol; 2021 Aug; 21(1):366. PubMed ID: 34380425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overexpression of OsPGIP2 confers Sclerotinia sclerotiorum resistance in Brassica napus through increased activation of defense mechanisms.
    Wang Z; Wan L; Xin Q; Chen Y; Zhang X; Dong F; Hong D; Yang G
    J Exp Bot; 2018 May; 69(12):3141-3155. PubMed ID: 29648614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection.
    Liu F; Li X; Wang M; Wen J; Yi B; Shen J; Ma C; Fu T; Tu J
    Plant Biotechnol J; 2018 Apr; 16(4):911-925. PubMed ID: 28929638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.