BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35270319)

  • 1. Microalgal Cultures for the Bioremediation of Urban Wastewaters in the Presence of Siloxanes.
    Salgado EM; Gonçalves AL; Sánchez-Soberón F; Ratola N; Pires JCM
    Int J Environ Res Public Health; 2022 Feb; 19(5):. PubMed ID: 35270319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy.
    Viegas C; Gouveia L; Gonçalves M
    J Environ Manage; 2021 May; 286():112187. PubMed ID: 33609932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO
    Kong W; Kong J; Ma J; Lyu H; Feng S; Wang Z; Yuan P; Shen B
    J Environ Manage; 2021 Apr; 284():112070. PubMed ID: 33561760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volatile methylsiloxanes through wastewater treatment plants - A review of levels and implications.
    Capela D; Ratola N; Alves A; Homem V
    Environ Int; 2017 May; 102():9-29. PubMed ID: 28325665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen Removal from Landfill Leachate by Microalgae.
    Pereira SF; Gonçalves AL; Moreira FC; Silva TF; Vilar VJ; Pires JC
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27869676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of microalgal N and P composition on wastewater nutrient remediation.
    Whitton R; Le Mével A; Pidou M; Ometto F; Villa R; Jefferson B
    Water Res; 2016 Mar; 91():371-8. PubMed ID: 26854403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient and heavy metal removal from piggery wastewater and CH
    Guo G; Guan J; Sun S; Liu J; Zhao Y
    Water Environ Res; 2020 Jun; 92(6):922-933. PubMed ID: 31837273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous improvements on nutrient and Mg recoveries of microalgal bioremediation for municipal wastewater and nickel laterite ore wastewater.
    Chen Z; Qiu S; Amadu AA; Shen Y; Wang L; Wu Z; Ge S
    Bioresour Technol; 2020 Feb; 297():122517. PubMed ID: 31830719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swine digestate treatment by prior nitrogen-starved Chlorella vulgaris: The effect of over-compensation strategy on microalgal biomass production and nutrient removal.
    Ran C; Zhou X; Yao C; Zhang Y; Kang W; Liu X; Herbert C; Xie T
    Sci Total Environ; 2021 May; 768():144462. PubMed ID: 33454469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of clean in place (CIP) wastewater using microalgae: Nutrient upcycling and value-added byproducts production.
    Su Y; Jacobsen C
    Sci Total Environ; 2021 Sep; 785():147337. PubMed ID: 33932664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalgae-based removal of contaminants of emerging concern: Mechanisms in Chlorella vulgaris and mixed algal-bacterial cultures.
    Prosenc F; Piechocka J; Škufca D; Heath E; Griessler Bulc T; Istenič D; Buttiglieri G
    J Hazard Mater; 2021 Sep; 418():126284. PubMed ID: 34116274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wastewater treatment for nutrient removal with Ecuadorian native microalgae.
    Benítez MB; Champagne P; Ramos A; Torres AF; Ochoa-Herrera V
    Environ Technol; 2019 Sep; 40(22):2977-2985. PubMed ID: 29600735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resource recovery through bioremediation of wastewaters and waste carbon by microalgae: a circular bioeconomy approach.
    Ummalyma SB; Sahoo D; Pandey A
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):58837-58856. PubMed ID: 33527238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal strategies for bioremediation of nitrate-contaminated groundwater and microalgae biomass production.
    Rezvani F; Sarrafzadeh MH; Seo SH; Oh HM
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27471-27482. PubMed ID: 30043348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide.
    Liu X; Ying K; Chen G; Zhou C; Zhang W; Zhang X; Cai Z; Holmes T; Tao Y
    Chemosphere; 2017 Nov; 186():977-985. PubMed ID: 28835006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalgae based wastewater treatment: a shifting paradigm for the developing nations.
    Moondra N; Jariwala ND; Christian RA
    Int J Phytoremediation; 2021; 23(7):765-771. PubMed ID: 33327739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris.
    Ruiz J; Alvarez P; Arbib Z; Garrido C; Barragán J; Perales JA
    Int J Phytoremediation; 2011 Oct; 13(9):884-96. PubMed ID: 21972511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-culturing microalgae with endophytic bacteria increases nutrient removal efficiency for biogas purification.
    Xu M; Xue Z; Sun S; Zhao C; Liu J; Liu J; Zhao Y
    Bioresour Technol; 2020 Oct; 314():123766. PubMed ID: 32645575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth promotion of three microalgae,
    Toyama T; Kasuya M; Hanaoka T; Kobayashi N; Tanaka Y; Inoue D; Sei K; Morikawa M; Mori K
    Biotechnol Biofuels; 2018; 11():176. PubMed ID: 29983739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microalgae Cultivation Using Screened Liquid Dairy Manure Applying Different Folds of Dilution: Nutrient Reduction Analysis with Emphasis on Phosphorus Removal.
    Wang L; Chen L; Wu SX
    Appl Biochem Biotechnol; 2020 Oct; 192(2):381-391. PubMed ID: 32385813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.