These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 3527043)

  • 1. Molecular aspects of sugar:ion cotransport.
    Wright JK; Seckler R; Overath P
    Annu Rev Biochem; 1986; 55():225-48. PubMed ID: 3527043
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanism of regulation of the lactose permease by the phosphotransferase system in Escherichia coli: evidence for protein-protein interaction.
    Osumi T; Saier MH
    Ann Microbiol (Paris); 1982; 133(2):269-73. PubMed ID: 7044217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidylethanolamine in Escherichia coli: studies with a pssA mutant lacking phosphatidylserine synthase.
    Aboulwafa M; Hvorup R; Saier MH
    Arch Microbiol; 2004 Jan; 181(1):26-34. PubMed ID: 14634719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbohydrate transport in bacteria.
    Dills SS; Apperson A; Schmidt MR; Saier MH
    Microbiol Rev; 1980 Sep; 44(3):385-418. PubMed ID: 6999324
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanism of sugar transport and phosphorylation via permeases of the bacterial phosphotransferase system: catalytic residues in the beta-glucoside-specific permease as defined by site-specific mutagenesis.
    Sutrina SL; Schnetz K; Rak B; Saier MH
    Res Microbiol; 1990; 141(3):368-74. PubMed ID: 2281195
    [No Abstract]   [Full Text] [Related]  

  • 6. Coupling of energy to D-mannitol transport in Escherichia coli.
    Jacobson GR
    Res Microbiol; 1990; 141(3):365-8. PubMed ID: 2126390
    [No Abstract]   [Full Text] [Related]  

  • 7. Evidence for two distinct conformations of the Escherichia coli mannitol permease that are important for its transport and phosphorylation functions.
    Khandekar SS; Jacobson GR
    J Cell Biochem; 1989 Feb; 39(2):207-16. PubMed ID: 2654151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of N-acetyl-D-galactosamine in Escherichia coli K92: effect on acetyl-amino sugar metabolism and polysialic acid production.
    Ezquerro-Sáenz C; Ferrero MA; Revilla-Nuin B; López Velasco FF; Martínez-Blanco H; Rodríguez-Aparicio LB
    Biochimie; 2006 Jan; 88(1):95-102. PubMed ID: 16040188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Interaction of the membrane transport proteins in E. coli K12].
    Kalachev IIa; Umiaroz AM; Burd GI
    Biokhimiia; 1981 Apr; 46(4):732-43. PubMed ID: 7025924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease.
    Flores N; Leal L; Sigala JC; de Anda R; Escalante A; Martínez A; Ramírez OT; Gosset G; Bolivar F
    J Mol Microbiol Biotechnol; 2007; 13(1-3):105-16. PubMed ID: 17693718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of sugar uptake via the multiple sugar metabolism operon by the phosphoenolpyruvate-dependent sugar phosphotransferase transport system of Streptococcus mutans.
    Cvitkovitch DG; Boyd DA; Hamilton IR
    Dev Biol Stand; 1995; 85():351-6. PubMed ID: 8586201
    [No Abstract]   [Full Text] [Related]  

  • 12. Catalytic activities associated with the enzymes II of the bacterial phosphotransferase system.
    Saier MH
    J Supramol Struct; 1980; 14(3):281-94. PubMed ID: 7012451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of phosphorylated enzyme I, the phosphoenolpyruvate:sugar phosphotransferase system sugar translocation signal protein.
    Teplyakov A; Lim K; Zhu PP; Kapadia G; Chen CC; Schwartz J; Howard A; Reddy PT; Peterkofsky A; Herzberg O
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16218-23. PubMed ID: 17053069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How carbohydrates cross the lipid membrane of bacterial cells.
    Kornberg HL
    Curr Top Cell Regul; 1992; 33():49-63. PubMed ID: 1499344
    [No Abstract]   [Full Text] [Related]  

  • 15. Regulation of galactoside transport by the PTS.
    Kuroda M; Wilson TH; Tsuchiya T
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):381-4. PubMed ID: 11361068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport capabilities encoded within the Bacillus subtilis genome.
    Saier MH; Goldman SR; Maile RR; Moreno MS; Weyler W; Yang N; Paulsen IT
    J Mol Microbiol Biotechnol; 2002 Jan; 4(1):37-67. PubMed ID: 11763970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The phosphoenolpyruvate-dependent phosphotransferase system: a central feature of carbohydrate accumulation by enteric bacteria.
    Mitchell WJ
    Microbiol Sci; 1985 Nov; 2(11):330-4, 339. PubMed ID: 3939989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations.
    Görke B; Rak B
    EMBO J; 1999 Jun; 18(12):3370-9. PubMed ID: 10369677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of energy to glucose transport by the bacterial phosphotransferase system.
    Erni B
    Res Microbiol; 1990; 141(3):360-4. PubMed ID: 2281194
    [No Abstract]   [Full Text] [Related]  

  • 20. [Purification and reconstitution of transport proteins from Escherichia coli].
    Hanada K
    Seikagaku; 1990 Jan; 62(1):49-52. PubMed ID: 2138658
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.