These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 3527066)

  • 1. The role of magnesium and potassium ions in the molecular mechanism of ribosome assembly: hydrodynamic, conformational, and thermal stability studies of 16 S RNA from Escherichia coli ribosomes.
    Allen SH; Wong KP
    Arch Biochem Biophys; 1986 Aug; 249(1):137-47. PubMed ID: 3527066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acquisition of native conformation of ribosomal 5S ribonucleic acid from Escherichia coli. Hydrodynamic and spectroscopic studies on the unfolding and refolding of ribonucleic acid.
    Fox JW; Wong KP
    Biochemistry; 1982 Apr; 21(9):2096-102. PubMed ID: 6807343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study on the hydrodynamic shape, conformation, and stability of E. coli ribosomal subunits in reconstitution buffer.
    Allen SH; Wong KP
    Arch Biochem Biophys; 1979 Jun; 195(1):112-20. PubMed ID: 383017
    [No Abstract]   [Full Text] [Related]  

  • 4. Protein-induced conformational changes in 16 S ribosomal RNA during the initial assembly steps of the Escherichia coli 30 S ribosomal subunit.
    Mandiyan V; Tumminia S; Wall JS; Hainfeld JF; Boublik M
    J Mol Biol; 1989 Nov; 210(2):323-36. PubMed ID: 2689654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of the influence of magnesium ions on the conformation of ribosomal ribonucleic acid and on the stability of the larger subribosomal particle of rabbit reticulocytes.
    Cox RA; Hirst W
    Biochem J; 1976 Dec; 160(3):505-19. PubMed ID: 797388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydrodynamic shape, conformation, and molecular model of Escherichia coli ribosomal 5 S RNA.
    Fox JW; Wong KP
    J Biol Chem; 1979 Oct; 254(20):10139-44. PubMed ID: 385597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary structure features of ribosomal RNA species within intact ribosomal subunits and efficiency of RNA-protein interactions in thermoacidophilic (Caldariella acidophila, Bacillus acidocaldarius) and mesophilic (Escherichia coli) bacteria.
    Cammarano P; Mazzei F; Londei P; Teichner A; de Rosa M; Gambacorta A
    Biochim Biophys Acta; 1983 Aug; 740(3):300-12. PubMed ID: 6347258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of the thermal stability of ribosomes and biologically active subribosomal particles.
    Cox RA; Pratt H; Huvos P; Higginson B; Hirst W
    Biochem J; 1973 Jul; 134(3):775-93. PubMed ID: 4584137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of in vitro 30 S ribosome assembly. II. Conformational changes of ribosomal proteins.
    Dunn JM; Wong KP
    J Biol Chem; 1979 Aug; 254(16):7712-6. PubMed ID: 381290
    [No Abstract]   [Full Text] [Related]  

  • 10. The secondary structure of E. coli ribosomes and ribosomal RNA's: a spectrophotometric approach.
    Araco A; Belli M; Giorgi C; Onori G
    Nucleic Acids Res; 1975 Mar; 2(3):373-81. PubMed ID: 1093140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA--protein interactions in ribosomes. 1. Thermal denaturation of RNA in ribosomes.
    Shatskii IN; Chichkova NV; Bogdanov AA
    Mol Biol; 1971; 5(1):120-5. PubMed ID: 4949467
    [No Abstract]   [Full Text] [Related]  

  • 12. Conformational changes and reassociation properties of small subunits of Escherichia coli ribosomes.
    Imamura T; Yokoyama M; Konishi K; Shimizu K; Miyazawa Y
    J Biochem; 1976 Aug; 80(2):277-82. PubMed ID: 794062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hydrodynamic and spectroscopic properties of 16 S RNA from Escherichia coli ribosome in reconstitution buffer.
    Allen SH; Wong KP
    J Biol Chem; 1978 Dec; 253(24):8759-66. PubMed ID: 363709
    [No Abstract]   [Full Text] [Related]  

  • 14. Mg2+-induced proton release from Escherichia coli ribosome and ribosomal RNA.
    Hagihara H; Horie K; Wada A; Fukutome H
    Biophys Chem; 1984 Mar; 19(2):147-61. PubMed ID: 6202336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of ionic and temperature shifts used for in vitro ribosome subunit reconstitution upon the large molecular weight ribosomal ribonucleic acids.
    Sykes J; Metcalf E
    Biochim Biophys Acta; 1983 Oct; 741(1):23-9. PubMed ID: 6351923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural changes of ribosome by the action of ethylene glycol.
    Fox JW; Owens DP; Wong KP
    Biochemistry; 1978 Apr; 17(8):1357-64. PubMed ID: 348233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational studies of Escherichia coli ribosomes with the use of acridine orange as a probe.
    Horie K; Wada A; Fukutome H
    J Biochem; 1981 Aug; 90(2):449-61. PubMed ID: 6170632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanism of in vitro 30 S ribosome assembly. I. Conformational changes of the 16 S RNA.
    Dunn JM; Wong KP
    J Biol Chem; 1979 Aug; 254(16):7705-11. PubMed ID: 381289
    [No Abstract]   [Full Text] [Related]  

  • 19. [Compact structure of the small E. coli ribosomal subunit and its RNA studied by fluorescence spectroscopy and sedimentation analysis].
    Potapov AP; Bogdanov AA
    Mol Biol (Mosk); 1977; 11(3):545-54. PubMed ID: 379604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the conformation and stability of 5 S RNA upon the binding of ribosomal proteins.
    Fox JW; Wong KP
    J Biol Chem; 1978 Jan; 253(1):18-20. PubMed ID: 338605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.