These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35270849)

  • 1. Smart-Sleeve: A Wearable Textile Pressure Sensor Array for Human Activity Recognition.
    Xu G; Wan Q; Deng W; Guo T; Cheng J
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Intelligence Based Approach for Classification of Human Activities Using MEMS Sensors Data.
    Khan YA; Imaduddin S; Singh YP; Wajid M; Usman M; Abbas M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HARTH: A Human Activity Recognition Dataset for Machine Learning.
    Logacjov A; Bach K; Kongsvold A; Bårdstu HB; Mork PJ
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable Flexible Electronics Based Cardiac Electrode for Researcher Mental Stress Detection System Using Machine Learning Models on Single Lead Electrocardiogram Signal.
    Bin Heyat MB; Akhtar F; Abbas SJ; Al-Sarem M; Alqarafi A; Stalin A; Abbasi R; Muaad AY; Lai D; Wu K
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical Activity Recognition Based on a Parallel Approach for an Ensemble of Machine Learning and Deep Learning Classifiers.
    Abid M; Khabou A; Ouakrim Y; Watel H; Chemcki S; Mitiche A; Benazza-Benyahia A; Mezghani N
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of Aggressive Movements Using Smartwatches.
    Tchuente F; Baddour N; Lemaire ED
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of Sedentary Behavior by Machine Learning Analysis of Wearable Sensors during Activities of Daily Living for Telemedical Assessment of Cardiovascular Risk.
    Kańtoch E
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Classification of Dog Activities with Quaternion-Based Fusion Approach on High-Dimensional Raw Data from Wearable Sensors.
    Muminov A; Mukhiddinov M; Cho J
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Human Gait Phases Using Textile Pressure Sensors: A Low Cost and Pervasive Approach.
    Milovic M; Farías G; Fingerhuth S; Pizarro F; Hermosilla G; Yunge D
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning.
    Uddin MZ; Soylu A
    Sci Rep; 2021 Aug; 11(1):16455. PubMed ID: 34385552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity.
    Qi K; Wang H; You X; Tao X; Li M; Zhou Y; Zhang Y; He J; Shao W; Cui S
    J Colloid Interface Sci; 2020 Mar; 561():93-103. PubMed ID: 31812870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human motion classification based on a textile integrated and wearable sensor array.
    Teichmann D; Kuhn A; Leonhardt S; Walter M
    Physiol Meas; 2013 Sep; 34(9):963-75. PubMed ID: 23945071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Core Capacitive Microfiber Sensor for Smart Textile Applications.
    Yu L; Feng Y; S/O M Tamil Selven D; Yao L; Soon RH; Yeo JC; Lim CT
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33347-33355. PubMed ID: 31424908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable-Sensors-Based Platform for Gesture Recognition of Autism Spectrum Disorder Children Using Machine Learning Algorithms.
    Siddiqui UA; Ullah F; Iqbal A; Khan A; Ullah R; Paracha S; Shahzad H; Kwak KS
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classifying Diverse Physical Activities Using "Smart Garments".
    Mokhlespour Esfahani MI; Nussbaum MA
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31315261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of Human Daily Activities Using Ensemble Methods Based on Smartphone Inertial Sensors.
    Ku Abd Rahim KN; Elamvazuthi I; Izhar LI; Capi G
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posture Detection Based on Smart Cushion for Wheelchair Users.
    Ma C; Li W; Gravina R; Fortino G
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28353684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Method for Sensor-Based Activity Recognition in Missing Data Scenario.
    Hossain T; Ahad MAR; Inoue S
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32650486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical Human Activity Recognition Using Wearable Sensors.
    Attal F; Mohammed S; Dedabrishvili M; Chamroukhi F; Oukhellou L; Amirat Y
    Sensors (Basel); 2015 Dec; 15(12):31314-38. PubMed ID: 26690450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human activity recognition from textile electrocardiograms.
    Klingenberg A; Purrucker V; Schuler W; Ganapathy N; Spicher N; Deserno TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3434-3437. PubMed ID: 36086499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.