These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35270897)

  • 1. Segmentation of Glottal Images from High-Speed Videoendoscopy Optimized by Synchronous Acoustic Recordings.
    Kopczynski B; Niebudek-Bogusz E; Pietruszewska W; Strumillo P
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis Method for Laryngeal High-Speed Videoendoscopy: Development of the Criteria for the Measurement Input.
    Mohd Khairuddin KA; Ahmad K; Mohd Ibrahim H; Yan Y
    J Voice; 2021 Jul; 35(4):636-645. PubMed ID: 31864891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relating Cepstral Peak Prominence to Cyclical Parameters of Vocal Fold Vibration from High-Speed Videoendoscopy Using Machine Learning: A Pilot Study.
    Popolo PS; Johnson AM
    J Voice; 2021 Sep; 35(5):703-716. PubMed ID: 32173147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal Segmentation for Laryngeal High-Speed Videoendoscopy in Connected Speech.
    Naghibolhosseini M; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF
    J Voice; 2018 Mar; 32(2):256.e1-256.e12. PubMed ID: 28647431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of videolaryngostroboscopic images in patients with glottic pathologies.
    Niebudek-Bogusz E; Kopczynski B; Strumillo P; Morawska J; Wiktorowicz J; Sliwinska-Kowalska M
    Logoped Phoniatr Vocol; 2017 Jul; 42(2):73-83. PubMed ID: 27132636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependencies and Ill-designed Parameters Within High-speed Videoendoscopy and Acoustic Signal Analysis.
    Schlegel P; Stingl M; Kunduk M; Kniesburges S; Bohr C; Döllinger M
    J Voice; 2019 Sep; 33(5):811.e1-811.e12. PubMed ID: 29861291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Using Laryngeal High-Speed Videoendoscopy Images Visualizing Partial Views of The Glottis on Measurement Outcomes.
    Mohd Khairuddin KA; Ahmad K; Ibrahim HM; Yan Y
    J Voice; 2022 Jan; 36(1):106-112. PubMed ID: 32456835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Segmentation for Laryngeal High-Speed Videoendoscopy in Connected Speech.
    Yousef AM; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF; Naghibolhosseini M
    J Voice; 2023 Jan; 37(1):26-36. PubMed ID: 33257208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of vocal fold function from acoustic data simultaneously recorded with high-speed endoscopy.
    Döllinger M; Kunduk M; Kaltenbacher M; Vondenhoff S; Ziethe A; Eysholdt U; Bohr C
    J Voice; 2012 Nov; 26(6):726-33. PubMed ID: 22632795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a glottal area index that integrates glottal gap size and open quotient.
    Chen G; Kreiman J; Gerratt BR; Neubauer J; Shue YL; Alwan A
    J Acoust Soc Am; 2013 Mar; 133(3):1656-66. PubMed ID: 23464035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphical evaluation of vocal fold vibratory patterns by high-speed videolaryngoscopy.
    Pinheiro AP; Dajer ME; Hachiya A; Montagnoli AN; Tsuji D
    J Voice; 2014 Jan; 28(1):106-11. PubMed ID: 24275457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the Immediate Effects of Humming on Vocal Fold Vibration Irregularity Using Electroglottography and High-speed Laryngoscopy in Patients With Organic Voice Disorders.
    Vlot C; Ogawa M; Hosokawa K; Iwahashi T; Kato C; Inohara H
    J Voice; 2017 Jan; 31(1):48-56. PubMed ID: 27178453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Deep Learning Approach for Quantifying Vocal Fold Dynamics During Connected Speech Using Laryngeal High-Speed Videoendoscopy.
    Yousef AM; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF; Naghibolhosseini M
    J Speech Lang Hear Res; 2022 Jun; 65(6):2098-2113. PubMed ID: 35605603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A portable high-speed camera system for vocal fold examinations.
    Hertegård S; Larsson H
    J Voice; 2014 Nov; 28(6):681-7. PubMed ID: 25008381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Volume, Pitch, and Phonation Type on Oscillation Initiation and Termination Phases Investigated With High-speed Videoendoscopy.
    Kunduk M; Ikuma T; Blouin DC; McWhorter AJ
    J Voice; 2017 May; 31(3):313-322. PubMed ID: 27671752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vocal fold vibrations: high-speed imaging, kymography, and acoustic analysis: a preliminary report.
    Larsson H; Hertegård S; Lindestad PA; Hammarberg B
    Laryngoscope; 2000 Dec; 110(12):2117-22. PubMed ID: 11129033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Period and glottal width irregularities in vocally normal speakers.
    Bonilha HS; Deliyski DD
    J Voice; 2008 Nov; 22(6):699-708. PubMed ID: 18031989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Speed Videoendoscopic and Acoustic Characteristics of Inspiratory Phonation.
    Patel RR; Sandage MJ; Golzarri-Arroyo L
    J Speech Lang Hear Res; 2023 Apr; 66(4):1192-1207. PubMed ID: 36917802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation.
    Rasp O; Lohscheller J; Doellinger M; Eysholdt U; Hoppe U
    Folia Phoniatr Logop; 2006; 58(3):175-85. PubMed ID: 16636565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating acoustic correlates of human vocal fold vibratory phase asymmetry through modeling and laryngeal high-speed videoendoscopy.
    Mehta DD; Zaéartu M; Quatieri TF; Deliyski DD; Hillman RE
    J Acoust Soc Am; 2011 Dec; 130(6):3999-4009. PubMed ID: 22225054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.