BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 35270937)

  • 1. Recent State of Wearable IMU Sensors Use in People Living with Spasticity: A Systematic Review.
    Weizman Y; Tirosh O; Fuss FK; Tan AM; Rutz E
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable inertial sensors provide reliable biomarkers of disease severity in multiple sclerosis: A systematic review and meta-analysis.
    Vienne-Jumeau A; Quijoux F; Vidal PP; Ricard D
    Ann Phys Rehabil Med; 2020 Mar; 63(2):138-147. PubMed ID: 31421274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tonic stretch reflex threshold as a measure of spasticity: implications for clinical practice.
    Calota A; Levin MF
    Top Stroke Rehabil; 2009; 16(3):177-88. PubMed ID: 19632962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of wearable sensors in upper extremity MSK conditions: a scoping review.
    Zadeh SM; MacDermid J; Johnson J; Birmingham TB; Shafiee E
    J Neuroeng Rehabil; 2023 Nov; 20(1):158. PubMed ID: 37980497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Position Tracking During Human Walking Using an Integrated Wearable Sensing System.
    Zizzo G; Ren L
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait Assessment Using Wearable Sensor-Based Devices in People Living with Dementia: A Systematic Review.
    Weizman Y; Tirosh O; Beh J; Fuss FK; Pedell S
    Int J Environ Res Public Health; 2021 Dec; 18(23):. PubMed ID: 34886459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Modeling of Spasticity for Clinical Assessment, Treatment and Rehabilitation.
    Cha Y; Arami A
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elbow spasticity during passive stretch-reflex: clinical evaluation using a wearable sensor system.
    McGibbon CA; Sexton A; Jones M; O'Connell C
    J Neuroeng Rehabil; 2013 Jun; 10(1):61. PubMed ID: 23782931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Nonproprietary Movement Analysis System (MoJoXlab) Based on Wearable Inertial Measurement Units Applicable to Healthy Participants and Those With Anterior Cruciate Ligament Reconstruction Across a Range of Complex Tasks: Validation Study.
    Islam R; Bennasar M; Nicholas K; Button K; Holland S; Mulholland P; Price B; Al-Amri M
    JMIR Mhealth Uhealth; 2020 Jun; 8(6):e17872. PubMed ID: 32543446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humanoid Robot Based Platform to Evaluate the Efficacy of Using Inertial Sensors for Spasticity Assessment in Cerebral Palsy.
    Cooney NJ; Minhas AS
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):254-263. PubMed ID: 34115599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Promising Wearable Solution for the Practical and Accurate Monitoring of Low Back Loading in Manual Material Handling.
    Matijevich ES; Volgyesi P; Zelik KE
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple tool to measure spasticity in spinal cord injury subjects.
    Arami A; Tagliamonte NL; Tamburella F; Huang HY; Molinari M; Burdet E
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1590-1596. PubMed ID: 28814047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validity and reliability of wearable inertial sensors in healthy adult walking: a systematic review and meta-analysis.
    Kobsar D; Charlton JM; Tse CTF; Esculier JF; Graffos A; Krowchuk NM; Thatcher D; Hunt MA
    J Neuroeng Rehabil; 2020 May; 17(1):62. PubMed ID: 32393301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel sensor-based assessment of lower limb spasticity in children with cerebral palsy.
    Choi S; Shin YB; Kim SY; Kim J
    J Neuroeng Rehabil; 2018 Jun; 15(1):45. PubMed ID: 29866177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeatability of measuring knee flexion angles with wearable inertial sensors.
    Fennema MC; Bloomfield RA; Lanting BA; Birmingham TB; Teeter MG
    Knee; 2019 Jan; 26(1):97-105. PubMed ID: 30554906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Machine Learning-Based Assessment for Elbow Spasticity Using Inertial Sensors.
    Kim JY; Park G; Lee SA; Nam Y
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proposed Mobility Assessments with Simultaneous Full-Body Inertial Measurement Units and Optical Motion Capture in Healthy Adults and Neurological Patients for Future Validation Studies: Study Protocol.
    Warmerdam E; Romijnders R; Geritz J; Elshehabi M; Maetzler C; Otto JC; Reimer M; Stuerner K; Baron R; Paschen S; Beyer T; Dopcke D; Eiken T; Ortmann H; Peters F; Recke FV; Riesen M; Rohwedder G; Schaade A; Schumacher M; Sondermann A; Maetzler W; Hansen C
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a model-based inverse kinematics approach based on wearable inertial sensors.
    Tagliapietra L; Modenese L; Ceseracciu E; Mazzà C; Reggiani M
    Comput Methods Biomech Biomed Engin; 2018 Dec; 21(16):834-844. PubMed ID: 30466324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technology in Strength and Conditioning: Assessing Bodyweight Squat Technique With Wearable Sensors.
    OʼReilly MA; Whelan DF; Ward TE; Delahunt E; Caulfield BM
    J Strength Cond Res; 2017 Aug; 31(8):2303-2312. PubMed ID: 28731981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relation between spasticity and muscle behavior during the swing phase of gait in children with cerebral palsy.
    Bar-On L; Molenaers G; Aertbeliën E; Monari D; Feys H; Desloovere K
    Res Dev Disabil; 2014 Dec; 35(12):3354-64. PubMed ID: 25240217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.