These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35270958)

  • 1. Dielectric Dispersion Modulated Sensing of Yeast Suspension Electroporation.
    Pintarelli GB; da Silva JR; Yang W; Suzuki DOH
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the electrochemical effects of pulsed electric fields in a biological cell suspension.
    Chafai DE; Mehle A; Tilmatine A; Maouche B; Miklavčič D
    Bioelectrochemistry; 2015 Dec; 106(Pt B):249-57. PubMed ID: 26315352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sinusoidal signal analysis of electroporation in biological cells.
    Ramos A; Schneider AL; Suzuki DO; Marques JL
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2965-73. PubMed ID: 22996724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfection of HeLa-cells with pEGFP plasmid by impedance power-assisted electroporation.
    Glahder J; Norrild B; Persson MB; Persson BR
    Biotechnol Bioeng; 2005 Nov; 92(3):267-76. PubMed ID: 16161165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological autoluminescence enables effective monitoring of yeast cell electroporation.
    Bereta M; Teplan M; Zakar T; Vuviet H; Cifra M; Chafai DE
    Biotechnol J; 2024 Apr; 19(4):e2300475. PubMed ID: 38651262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-frequency dielectric dispersion of bacterial cell suspensions.
    Asami K
    Colloids Surf B Biointerfaces; 2014 Jul; 119():1-5. PubMed ID: 24835050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical analysis of transmembrane potential of cells exposed to nanosecond pulsed electric field.
    Lu W; Wu K; Hu X; Xie X; Ning J; Wang C; Zhou H; Yang G
    Int J Radiat Biol; 2017 Feb; 93(2):231-239. PubMed ID: 27586355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cell electroporation on the conductivity of a cell suspension.
    Pavlin M; Kanduser M; Rebersek M; Pucihar G; Hart FX; Magjarevic R; Miklavcic D
    Biophys J; 2005 Jun; 88(6):4378-90. PubMed ID: 15792975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental system for real-time fluorescence recordings of cell membrane changes induced by electroporation.
    Tivig I; Savopol T; Kovacs E; Moisescu MG
    Eur Biophys J; 2020 Jan; 49(1):105-111. PubMed ID: 31872286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear Dispersive Model of Electroporation for Irregular Nucleated Cells.
    Chiapperino MA; Bia P; Caratelli D; Gielis J; Mescia L; Dermol-Černe J; Miklavčič D
    Bioelectromagnetics; 2019 Jul; 40(5):331-342. PubMed ID: 31179573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance electrical impedance tomography for monitoring electric field distribution during tissue electroporation.
    Kranjc M; Bajd F; Serša I; Miklavčič D
    IEEE Trans Med Imaging; 2011 Oct; 30(10):1771-8. PubMed ID: 21521664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroporation-based technologies for medicine: principles, applications, and challenges.
    Yarmush ML; Golberg A; Serša G; Kotnik T; Miklavčič D
    Annu Rev Biomed Eng; 2014 Jul; 16():295-320. PubMed ID: 24905876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible and irreversible electroporation of cell suspensions flowing through a localized DC electric field.
    Korohoda W; Grys M; Madeja Z
    Cell Mol Biol Lett; 2013 Mar; 18(1):102-19. PubMed ID: 23271434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-linear dielectric spectroscopy of microbiological suspensions.
    Treo EF; Felice CJ
    Biomed Eng Online; 2009 Sep; 8():19. PubMed ID: 19772595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mediated amperometry as a prospective method for the investigation of electroporation.
    Simonis P; Garjonyte R; Stirke A
    Sci Rep; 2020 Nov; 10(1):19094. PubMed ID: 33154473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphysics modelling of electroporation under uni- or bipolar nanosecond pulse sequences.
    Guo F; Qian K; Zhang L; Liu X; Peng H
    Bioelectrochemistry; 2021 Oct; 141():107878. PubMed ID: 34198114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the efficiency of cell membrane electroporation using pulsed ac fields.
    Chen C; Evans JA; Robinson MP; Smye SW; O'Toole P
    Phys Med Biol; 2008 Sep; 53(17):4747-57. PubMed ID: 18701769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response characteristics and optimization of electroporation: simulation based on finite element method.
    Zhou C; Yan Z; Liu K
    Electromagn Biol Med; 2021 Jul; 40(3):321-337. PubMed ID: 34278913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Impedance Spectroscopy for Monitoring Tissue Impedance, Temperature, and Treatment Outcome During Electroporation-Based Therapies.
    Lorenzo MF; Bhonsle SP; Arena CB; Davalos RV
    IEEE Trans Biomed Eng; 2021 May; 68(5):1536-1546. PubMed ID: 33156779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses.
    Bhonsle SP; Arena CB; Sweeney DC; Davalos RV
    Biomed Eng Online; 2015; 14 Suppl 3(Suppl 3):S3. PubMed ID: 26355870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.