These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35270985)

  • 1. Improving Wearable-Based Activity Recognition Using Image Representations.
    Sanchez Guinea A; Sarabchian M; Mühlhäuser M
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Wavelet Convolutional Neural Networks for Multimodal Human Activity Recognition Using Wearable Inertial Sensors.
    Vuong TH; Doan T; Takasu A
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wearable Sensors for Activity Recognition in Ultimate Frisbee Using Convolutional Neural Networks and Transfer Learning.
    Link J; Perst T; Stoeve M; Eskofier BM
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network
    Huynh-The T; Hua CH; Kim DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2478-2481. PubMed ID: 31946400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning.
    Zimmermann T; Taetz B; Bleser G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IMU-Based Fitness Activity Recognition Using CNNs for Time Series Classification.
    Müller PN; Müller AJ; Achenbach P; Göbel S
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex Deep Neural Networks from Large Scale Virtual IMU Data for Effective Human Activity Recognition Using Wearables.
    Kwon H; Abowd GD; Plötz T
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Robust Deep Feature Extraction Method for Human Activity Recognition Using a Wavelet Based Spectral Visualisation Technique.
    Ahmed N; Numan MOA; Kabir R; Islam MR; Watanobe Y
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning Empowered Wearable-Based Behavior Recognition for Search and Rescue Dogs.
    Kasnesis P; Doulgerakis V; Uzunidis D; Kogias DG; Funcia SI; González MB; Giannousis C; Patrikakis CZ
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors.
    Jameer S; Syed H
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable Device-Based Gait Recognition Using Angle Embedded Gait Dynamic Images and a Convolutional Neural Network.
    Zhao Y; Zhou S
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28264503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Lightweight Attention-Based CNN Model for Efficient Gait Recognition with Wearable IMU Sensors.
    Huang H; Zhou P; Li Y; Sun F
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification.
    Sun Y; Xue B; Zhang M; Yen GG; Lv J
    IEEE Trans Cybern; 2020 Sep; 50(9):3840-3854. PubMed ID: 32324588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable IMU-Based Human Activity Recognition Algorithm for Clinical Balance Assessment Using 1D-CNN and GRU Ensemble Model.
    Kim YW; Joa KL; Jeong HY; Lee S
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors.
    Li F; Shirahama K; Nisar MA; Köping L; Grzegorzek M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29495310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-Branch Interactive Networks on Multichannel Time Series for Human Activity Recognition.
    Tang Y; Zhang L; Wu H; He J; Song A
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):5223-5234. PubMed ID: 35867366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust human locomotion and localization activity recognition over multisensory.
    Khan D; Alonazi M; Abdelhaq M; Al Mudawi N; Algarni A; Jalal A; Liu H
    Front Physiol; 2024; 15():1344887. PubMed ID: 38449788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable on-device deep learning system for hand gesture recognition based on FPGA accelerator.
    Jiang W; Ye X; Chen R; Su F; Lin M; Ma Y; Zhu Y; Huang S
    Math Biosci Eng; 2020 Nov; 18(1):132-153. PubMed ID: 33525084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.