These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 35270990)

  • 1. Analysis of Methods for Determining Shallow Waterbody Depths Based on Images Taken by Unmanned Aerial Vehicles.
    Specht M; Wiśniewska M; Stateczny A; Specht C; Szostak B; Lewicka O; Stateczny M; Widźgowski S; Halicki A
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a New Lightweight UAV-Borne Topo-Bathymetric LiDAR for Shallow Water Bathymetry and Object Detection.
    Wang D; Xing S; He Y; Yu J; Xu Q; Li P
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Land and Seabed Surface Modelling in the Coastal Zone Using UAV/USV-Based Data Integration.
    Specht O
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using UAV Photogrammetry to Analyse Changes in the Coastal Zone Based on the Sopot Tombolo (Salient) Measurement Project.
    Burdziakowski P; Specht C; Dabrowski PS; Specht M; Lewicka O; Makar A
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.
    Rosnell T; Honkavaara E
    Sensors (Basel); 2012; 12(1):453-80. PubMed ID: 22368479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the Accuracy of Determining the Angular Position of the Unmanned Bathymetric Surveying Vehicle Based on the Sea Horizon Image.
    Naus K; Marchel Ł; Szymak P; Nowak A
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31731532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of dump and landfill waste volumes using unmanned aerial systems.
    Filkin T; Sliusar N; Huber-Humer M; Ritzkowski M; Korotaev V
    Waste Manag; 2022 Feb; 139():301-308. PubMed ID: 34998186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ground Control Point-Free Unmanned Aerial Vehicle-Based Photogrammetry for Volume Estimation of Stockpiles Carried on Barges.
    He H; Chen T; Zeng H; Huang S
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31412577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring Dewatering Fish Spawning Sites in the Reservoir of a Large Hydropower Plant in a Lowland Country Using Unmanned Aerial Vehicles.
    Jurevičius L; Punys P; Šadzevičius R; Kasiulis E
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the Steering Precision of a Hydrographic Unmanned Surface Vessel (USV) along Sounding Profiles Using a Low-Cost Multi-Global Navigation Satellite System (GNSS) Receiver Supported Autopilot.
    Specht M; Specht C; Lasota H; Cywiński P
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31547372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations.
    Siddiqi MA; Iwendi C; Jaroslava K; Anumbe N
    Math Biosci Eng; 2022 Jan; 19(3):2641-2670. PubMed ID: 35240800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SMART SKY EYE System for Preliminary Structural Safety Assessment of Buildings Using Unmanned Aerial Vehicles.
    Bae J; Lee J; Jang A; Ju YK; Park MJ
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the Relationships between the Height and Spectrum of Submerged Tufa Barrage Using UAV-Derived Geometric Bathymetry and Digital Orthoimages.
    He J; Lin J; Xu Y
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Camera Imaging System for UAV Photogrammetry.
    Wierzbicki D
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30050007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smallholder oil palm plantation sustainability assessment using multi-criteria analysis and unmanned aerial vehicles.
    Wong YB; Gibbins C; Azhar B; Phan SS; Scholefield P; Azmi R; Lechner AM
    Environ Monit Assess; 2023 Apr; 195(5):577. PubMed ID: 37062786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Threats from and Countermeasures for Unmanned Aerial and Underwater Vehicles.
    Khawaja W; Semkin V; Ratyal NI; Yaqoob Q; Gul J; Guvenc I
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution.
    Park S; Lee H; Chon J
    Environ Pollut; 2019 Apr; 247():340-348. PubMed ID: 30690230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective coastal Escherichia coli monitoring by unmanned aerial vehicles (UAV) thermal infrared images.
    Cheng KH; Jiao JJ; Luo X; Yu S
    Water Res; 2022 Aug; 222():118900. PubMed ID: 35932703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy Analysis of a New Data Processing Method for Landslide Monitoring Based on Unmanned Aerial System Photogrammetry.
    Jakopec I; Marendić A; Grgac I
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.
    Huang KL; Chiu CC; Chiu SY; Teng YJ; Hao SS
    Sensors (Basel); 2015 Jul; 15(7):16848-65. PubMed ID: 26184213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.