These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35271018)

  • 1. Landing System Development Based on Inverse Homography Range Camera Fusion (IHRCF).
    Sefidgar M; Landry R
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AprilTag array-aided extrinsic calibration of camera-laser multi-sensor system.
    Tang D; Hu T; Shen L; Ma Z; Pan C
    Robotics Biomim; 2016; 3():13. PubMed ID: 27512645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone.
    Nguyen PH; Arsalan M; Koo JH; Naqvi RA; Truong NQ; Park KR
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29795038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.
    Nguyen PH; Kim KW; Lee YW; Park KR
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28867775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autocalibration of a projector-camera system.
    Okatani T; Deguchi K
    IEEE Trans Pattern Anal Mach Intell; 2005 Dec; 27(12):1845-55. PubMed ID: 16355654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Effective Camera-to-Lidar Spatiotemporal Calibration Based on a Simple Calibration Target.
    Grammatikopoulos L; Papanagnou A; Venianakis A; Kalisperakis I; Stentoumis C
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Marker and MEMS IMU-Based Pose Estimation Method to Meet Multirotor UAV Landing Requirements.
    Wu Y; Niu X; Du J; Chang L; Tang H; Zhang H
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and Improvements in AprilTag Based State Estimation.
    Abbas SM; Aslam S; Berns K; Muhammad A
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared-Inertial Navigation for Commercial Aircraft Precision Landing in Low Visibility and GPS-Denied Environments.
    Zhang L; Zhai Z; He L; Wen P; Niu W
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm.
    Kyristsis S; Antonopoulos A; Chanialakis T; Stefanakis E; Linardos C; Tripolitsiotis A; Partsinevelos P
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control System for Vertical Take-Off and Landing Vehicle's Adaptive Landing Based on Multi-Sensor Data Fusion.
    Tang H; Zhang D; Gan Z
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Our solution for fusion of simultaneusly acquired whole body scintigrams and optical images, as usesful tool in clinical practice in patients with differentiated thyroid carcinomas after radioiodine therapy. A useful tool in clinical practice.
    Matovic M; Jankovic M; Barjaktarovic M; Jeremic M
    Hell J Nucl Med; 2017; 20 Suppl():159. PubMed ID: 29324929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homography-based robust pose compensation and fusion imaging for augmented reality based endoscopic navigation system.
    Li W; Fan J; Li S; Tian Z; Ai D; Song H; Yang J
    Comput Biol Med; 2021 Nov; 138():104864. PubMed ID: 34634638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monocular Absolute Depth Estimation from Motion for Small Unmanned Aerial Vehicles by Geometry-Based Scale Recovery.
    Zhang C; Weng X; Cao Y; Ding M
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.
    Yang T; Li G; Li J; Zhang Y; Zhang X; Zhang Z; Li Z
    Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27589755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spacecraft Homography Pose Estimation with Single-Stage Deep Convolutional Neural Network.
    Chen S; Yang W; Wang W; Mai J; Liang J; Zhang X
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UAV Landing Based on the Optical Flow Videonavigation.
    Miller B; Miller A; Popov A; Stepanyan K
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30889892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GNSS-Assisted Integrated Sensor Orientation with Sensor Pre-Calibration for Accurate Corridor Mapping.
    Zhou Y; Rupnik E; Faure PH; Pierrot-Deseilligny M
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30149517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-precision binocular camera calibration method based on a 3D calibration object.
    Zhang X; Lv T; Dan W; Minghao Z
    Appl Opt; 2024 Apr; 63(10):2667-2682. PubMed ID: 38568551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.
    Paull L; Thibault C; Nagaty A; Seto M; Li H
    IEEE Trans Cybern; 2014 Sep; 44(9):1605-18. PubMed ID: 25137689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.