BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 35271058)

  • 1. Wearable Sensor-Based Human Activity Recognition with Transformer Model.
    Dirgová Luptáková I; Kubovčík M; Pospíchal J
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BioMAT: An Open-Source Biomechanics Multi-Activity Transformer for Joint Kinematic Predictions Using Wearable Sensors.
    Sharifi-Renani M; Mahoor MH; Clary CW
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor.
    Khatun MA; Yousuf MA; Ahmed S; Uddin MZ; Alyami SA; Al-Ashhab S; Akhdar HF; Khan A; Azad A; Moni MA
    IEEE J Transl Eng Health Med; 2022; 10():2700316. PubMed ID: 35795873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-speed transformer network for neurodegenerative disease assessment and activity recognition.
    Cheriet M; Dentamaro V; Hamdan M; Impedovo D; Pirlo G
    Comput Methods Programs Biomed; 2023 Mar; 230():107344. PubMed ID: 36706617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved human activity recognition technique based on convolutional neural network.
    Raj R; Kos A
    Sci Rep; 2023 Dec; 13(1):22581. PubMed ID: 38114574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smartphone Sensor-Based Human Motion Characterization with Neural Stochastic Differential Equations and Transformer Model.
    Lee J; Kim T; Park J; Park J
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MaskCAE: Masked Convolutional AutoEncoder via Sensor Data Reconstruction for Self-Supervised Human Activity Recognition.
    Cheng D; Zhang L; Qin L; Wang S; Wu H; Song A
    IEEE J Biomed Health Inform; 2024 May; 28(5):2687-2698. PubMed ID: 38442051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intelligent Physical Training Data Processing Based on Wearable Devices.
    Liu X
    Comput Intell Neurosci; 2022; 2022():1207457. PubMed ID: 35634051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data.
    Li K; Habre R; Deng H; Urman R; Morrison J; Gilliland FD; Ambite JL; Stripelis D; Chiang YY; Lin Y; Bui AA; King C; Hosseini A; Vliet EV; Sarrafzadeh M; Eckel SP
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11201. PubMed ID: 30730297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human activity recognition from inertial sensor time-series using batch normalized deep LSTM recurrent networks.
    Zebin T; Sperrin M; Peek N; Casson AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones.
    Ankita ; Rani S; Babbar H; Coleman S; Singh A; Aljahdali HM
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning.
    Uddin MZ; Soylu A
    Sci Rep; 2021 Aug; 11(1):16455. PubMed ID: 34385552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-Branch Interactive Networks on Multichannel Time Series for Human Activity Recognition.
    Tang Y; Zhang L; Wu H; He J; Song A
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):5223-5234. PubMed ID: 35867366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors.
    Jameer S; Syed H
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable Sensors for Activity Recognition in Ultimate Frisbee Using Convolutional Neural Networks and Transfer Learning.
    Link J; Perst T; Stoeve M; Eskofier BM
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated classification of hand gestures using a wristband and machine learning for possible application in pill intake monitoring.
    Moccia S; Solbiati S; Khornegah M; Bossi FF; Caiani EG
    Comput Methods Programs Biomed; 2022 Jun; 219():106753. PubMed ID: 35338885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems.
    Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z
    Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Wavelet Convolutional Neural Networks for Multimodal Human Activity Recognition Using Wearable Inertial Sensors.
    Vuong TH; Doan T; Takasu A
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.