BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 35271058)

  • 21. Smartphone Motion Sensor-Based Complex Human Activity Identification Using Deep Stacked Autoencoder Algorithm for Enhanced Smart Healthcare System.
    Alo UR; Nweke HF; Teh YW; Murtaza G
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167424
    [TBL] [Abstract][Full Text] [Related]  

  • 22. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disentangling data dependency using cross-validation strategies to evaluate prediction quality of cattle grazing activities using machine learning algorithms and wearable sensor data.
    Coelho Ribeiro LA; Bresolin T; Rosa GJM; Rume Casagrande D; Danes MAC; Dórea JRR
    J Anim Sci; 2021 Sep; 99(9):. PubMed ID: 34223900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring Artificial Neural Networks Efficiency in Tiny Wearable Devices for Human Activity Recognition.
    Lattanzi E; Donati M; Freschi V
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human Behavior Recognition in Outdoor Sports Based on the Local Error Model and Convolutional Neural Network.
    Hua X; Han L; Jiang Y
    Comput Intell Neurosci; 2022; 2022():6988525. PubMed ID: 35800705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network
    Huynh-The T; Hua CH; Kim DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2478-2481. PubMed ID: 31946400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human Activity Recognition Algorithm with Physiological and Inertial Signals Fusion: Photoplethysmography, Electrodermal Activity, and Accelerometry.
    Gilmore J; Nasseri M
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793858
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HarMI: Human Activity Recognition Via Multi-Modality Incremental Learning.
    Zhang X; Yu H; Yang Y; Gu J; Li Y; Zhuang F; Yu D; Ren Z
    IEEE J Biomed Health Inform; 2022 Mar; 26(3):939-951. PubMed ID: 34061754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid convolution neural network with channel attention mechanism for sensor-based human activity recognition.
    Mekruksavanich S; Jitpattanakul A
    Sci Rep; 2023 Jul; 13(1):12067. PubMed ID: 37495634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial Intelligence Based Approach for Classification of Human Activities Using MEMS Sensors Data.
    Khan YA; Imaduddin S; Singh YP; Wajid M; Usman M; Abbas M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772315
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. INIM: Inertial Images Construction with Applications to Activity Recognition.
    Daniel N; Klein I
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Video-Based Human Activity Recognition Using Deep Learning Approaches.
    Surek GAS; Seman LO; Stefenon SF; Mariani VC; Coelho LDS
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wearable IMU-Based Human Activity Recognition Algorithm for Clinical Balance Assessment Using 1D-CNN and GRU Ensemble Model.
    Kim YW; Joa KL; Jeong HY; Lee S
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vision Transformer and Deep Sequence Learning for Human Activity Recognition in Surveillance Videos.
    Hussain A; Hussain T; Ullah W; Baik SW
    Comput Intell Neurosci; 2022; 2022():3454167. PubMed ID: 35419045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human Lower Limb Motion Capture and Recognition Based on Smartphones.
    Duan LT; Lawo M; Wang ZG; Wang HY
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep neural networks for wearable sensor-based activity recognition in Parkinson's disease: investigating generalizability and model complexity.
    Davidashvilly S; Cardei M; Hssayeni M; Chi C; Ghoraani B
    Biomed Eng Online; 2024 Feb; 23(1):17. PubMed ID: 38336781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects.
    Islam MM; Nooruddin S; Karray F; Muhammad G
    Comput Biol Med; 2022 Oct; 149():106060. PubMed ID: 36084382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inertial-Measurement-Unit-Based Novel Human Activity Recognition Algorithm Using Conformer.
    Kim YW; Cho WH; Kim KS; Lee S
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An End-to-End Deep Learning Pipeline for Football Activity Recognition Based on Wearable Acceleration Sensors.
    Cuperman R; Jansen KMB; Ciszewski MG
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.