These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
565 related articles for article (PubMed ID: 35271062)
1. Acquisition of High Spectral Resolution Diffuse Reflectance Image Cubes (350-2500 nm) from Archaeological Wall Paintings and Other Immovable Heritage Using a Field-Deployable Spatial Scanning Reflectance Spectrometry Hyperspectral System. Radpour R; Delaney JK; Kakoulli I Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271062 [TBL] [Abstract][Full Text] [Related]
2. Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts. Cucci C; Delaney JK; Picollo M Acc Chem Res; 2016 Oct; 49(10):2070-2079. PubMed ID: 27677864 [TBL] [Abstract][Full Text] [Related]
3. Reflectance Imaging Spectroscopy (RIS) for Gabrieli F; Delaney JK; Erdmann RG; Gonzalez V; van Loon A; Smulders P; Berkeveld R; van Langh R; Keune K Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696068 [TBL] [Abstract][Full Text] [Related]
4. Near-UV to mid-IR reflectance imaging spectroscopy of paintings on the macroscale. Gabrieli F; Dooley KA; Facini M; Delaney JK Sci Adv; 2019 Aug; 5(8):eaaw7794. PubMed ID: 31467975 [TBL] [Abstract][Full Text] [Related]
5. Applying Hyperspectral Reflectance Imaging to Investigate the Palettes and the Techniques of Painters. Caccia M; Caglio S; Galli A; Interlenghi M; Castiglioni I; Martini M J Vis Exp; 2021 Jun; (172):. PubMed ID: 34223834 [TBL] [Abstract][Full Text] [Related]
6. Macroscale multimodal imaging reveals ancient painting production technology and the vogue in Greco-Roman Egypt. Delaney JK; Dooley KA; Radpour R; Kakoulli I Sci Rep; 2017 Nov; 7(1):15509. PubMed ID: 29138483 [TBL] [Abstract][Full Text] [Related]
7. Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy. Dooley KA; Lomax S; Zeibel JG; Miliani C; Ricciardi P; Hoenigswald A; Loew M; Delaney JK Analyst; 2013 Sep; 138(17):4838-48. PubMed ID: 23799233 [TBL] [Abstract][Full Text] [Related]
8. Scanning multispectral IR reflectography SMIRR: an advanced tool for art diagnostics. Daffara C; Pampaloni E; Pezzati L; Barucci M; Fontana R Acc Chem Res; 2010 Jun; 43(6):847-56. PubMed ID: 20230039 [TBL] [Abstract][Full Text] [Related]
9. Portable Raman, DRIFTS, and XRF Analysis to Diagnose the Conservation State of Two Wall Painting Panels from Pompeii Deposited in the Naples National Archaeological Museum (Italy). Madariaga JM; Maguregui M; Castro K; Knuutinen U; Martínez-Arkarazo I Appl Spectrosc; 2016 Jan; 70(1):137-46. PubMed ID: 26767639 [TBL] [Abstract][Full Text] [Related]
10. Shortwave Infrared Imaging Spectroscopy for Analysis of Ancient Paintings. Wu T; Li G; Yang Z; Zhang H; Lei Y; Wang N; Zhang L Appl Spectrosc; 2017 May; 71(5):977-987. PubMed ID: 27872219 [TBL] [Abstract][Full Text] [Related]
11. Non-invasive Investigations of Paintings by Portable Instrumentation: The MOLAB Experience. Brunetti B; Miliani C; Rosi F; Doherty B; Monico L; Romani A; Sgamellotti A Top Curr Chem (Cham); 2016 Feb; 374(1):10. PubMed ID: 27572993 [TBL] [Abstract][Full Text] [Related]
12. Visible and infrared imaging spectroscopy of Picasso's Harlequin musician: mapping and identification of artist materials in situ. Delaney JK; Zeibel JG; Thoury M; Littleton R; Palmer M; Morales KM; de la Rie ER; Hoenigswald A Appl Spectrosc; 2010 Jun; 64(6):584-94. PubMed ID: 20537225 [TBL] [Abstract][Full Text] [Related]
13. Characterisation of a portable Raman spectrometer for in situ analysis of art objects. Lauwers D; Hutado AG; Tanevska V; Moens L; Bersani D; Vandenabeele P Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():294-301. PubMed ID: 24055678 [TBL] [Abstract][Full Text] [Related]
14. Standoff Mid-Infrared Emissive Imaging Spectroscopy for Identification and Mapping of Materials in Polychrome Objects. Gabrieli F; Dooley KA; Zeibel JG; Howe JD; Delaney JK Angew Chem Int Ed Engl; 2018 Jun; 57(25):7341-7345. PubMed ID: 29205741 [TBL] [Abstract][Full Text] [Related]
15. The combined use of SEM-EDX, Raman, ATR-FTIR and visible reflectance techniques for the characterisation of Roman wall painting pigments from Monte d'Oro area (Rome): an insight into red, yellow and pink shades. Guglielmi V; Andreoli M; Comite V; Baroni A; Fermo P Environ Sci Pollut Res Int; 2022 Apr; 29(20):29419-29437. PubMed ID: 34196870 [TBL] [Abstract][Full Text] [Related]
16. In Situ Identification of Pigment Composition and Particle Size on Wall Paintings Using Visible Spectroscopy as a Noninvasive Measurement Method. Li J; Wan X; Bu Y; Li C; Liang J; Liu Q Appl Spectrosc; 2016 Nov; 70(11):1900-1909. PubMed ID: 27461462 [TBL] [Abstract][Full Text] [Related]
17. Enriching the knowledge of Ostia Antica painted fragments: a multi-methodological approach. Bracci S; Cantisani E; Conti C; Magrini D; Vettori S; Tomassini P; Marano M Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120260. PubMed ID: 34507033 [TBL] [Abstract][Full Text] [Related]
18. Non-Invasive and Non-Destructive Examination of Artistic Pigments, Paints, and Paintings by Means of X-Ray Methods. Janssens K; Van der Snickt G; Vanmeert F; Legrand S; Nuyts G; Alfeld M; Monico L; Anaf W; De Nolf W; Vermeulen M; Verbeeck J; De Wael K Top Curr Chem (Cham); 2016 Dec; 374(6):81. PubMed ID: 27873287 [TBL] [Abstract][Full Text] [Related]
19. In situ noninvasive study of artworks: the MOLAB multitechnique approach. Miliani C; Rosi F; Brunetti BG; Sgamellotti A Acc Chem Res; 2010 Jun; 43(6):728-38. PubMed ID: 20450184 [TBL] [Abstract][Full Text] [Related]
20. Spectral Behavior of White Pigment Mixtures Using Reflectance, Ultraviolet-Fluorescence Spectroscopy, and Multispectral Imaging. Pronti L; Felici AC; Ménager M; Vieillescazes C; Piacentini M Appl Spectrosc; 2017 Dec; 71(12):2616-2625. PubMed ID: 28730846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]