These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 35271158)
21. Absolute Reliability of Gait Parameters Acquired With Markerless Motion Capture in Living Domains. Riazati S; McGuirk TE; Perry ES; Sihanath WB; Patten C Front Hum Neurosci; 2022; 16():867474. PubMed ID: 35782037 [No Abstract] [Full Text] [Related]
22. Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm. Ota M; Tateuchi H; Hashiguchi T; Ichihashi N Gait Posture; 2021 Mar; 85():290-297. PubMed ID: 33636458 [TBL] [Abstract][Full Text] [Related]
23. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 2: Accuracy. Pagnon D; Domalain M; Reveret L Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408326 [TBL] [Abstract][Full Text] [Related]
24. Applications of markerless motion capture in gait recognition. Sandau M Dan Med J; 2016 Mar; 63(3):. PubMed ID: 26931198 [TBL] [Abstract][Full Text] [Related]
25. Accuracy of a 3D temporal scanning system for gait analysis: Comparative with a marker-based photogrammetry system. Ruescas Nicolau AV; De Rosario H; Basso Della-Vedova F; Parrilla Bernabé E; Juan MC; López-Pascual J Gait Posture; 2022 Sep; 97():28-34. PubMed ID: 35868094 [TBL] [Abstract][Full Text] [Related]
26. Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait. Horsak B; Eichmann A; Lauer K; Prock K; Krondorfer P; Siragy T; Dumphart B J Biomech; 2023 Oct; 159():111801. PubMed ID: 37738945 [TBL] [Abstract][Full Text] [Related]
27. Concurrent validity of lower extremity kinematics and jump characteristics captured in pre-school children by a markerless 3D motion capture system. Harsted S; Holsgaard-Larsen A; Hestbæk L; Boyle E; Lauridsen HH Chiropr Man Therap; 2019; 27():39. PubMed ID: 31417672 [TBL] [Abstract][Full Text] [Related]
28. Development of a Robust, Simple, and Affordable Human Gait Analysis System Using Bottom-Up Pose Estimation With a Smartphone Camera. Viswakumar A; Rajagopalan V; Ray T; Gottipati P; Parimi C Front Physiol; 2021; 12():784865. PubMed ID: 35069246 [TBL] [Abstract][Full Text] [Related]
29. Differences between motion capture and video analysis systems in calculating knee angles in elite-standard race walking. Hanley B; Tucker CB; Bissas A J Sports Sci; 2018 Jun; 36(11):1250-1255. PubMed ID: 28850306 [TBL] [Abstract][Full Text] [Related]
30. Markerless Knee Joint Position Measurement Using Depth Data during Stair Walking. Ogawa A; Mita A; Yorozu A; Takahashi M Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29165396 [TBL] [Abstract][Full Text] [Related]
31. Knee joint sagittal plane movement in cerebral palsy: a comparative study of 2-dimensional markerless video and 3-dimensional gait analysis. Pantzar-Castilla E; Cereatti A; Figari G; Valeri N; Paolini G; Della Croce U; Magnuson A; Riad J Acta Orthop; 2018 Dec; 89(6):656-661. PubMed ID: 30558517 [TBL] [Abstract][Full Text] [Related]
32. The reliability and validity of gait analysis system using 3D markerless pose estimation algorithms. Liang S; Zhang Y; Diao Y; Li G; Zhao G Front Bioeng Biotechnol; 2022; 10():857975. PubMed ID: 36032709 [TBL] [Abstract][Full Text] [Related]
33. The efficacy of a video-based marker-less tracking system for gait analysis. Ong A; Harris IS; Hamill J Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1089-1095. PubMed ID: 28569549 [TBL] [Abstract][Full Text] [Related]
34. Development of Smartphone Application for Markerless Three-Dimensional Motion Capture Based on Deep Learning Model. Aoyagi Y; Yamada S; Ueda S; Iseki C; Kondo T; Mori K; Kobayashi Y; Fukami T; Hoshimaru M; Ishikawa M; Ohta Y Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890959 [TBL] [Abstract][Full Text] [Related]
35. The measurement of in vivo joint angles during a squat using a single camera markerless motion capture system as compared to a marker based system. Schmitz A; Ye M; Boggess G; Shapiro R; Yang R; Noehren B Gait Posture; 2015 Feb; 41(2):694-8. PubMed ID: 25708833 [TBL] [Abstract][Full Text] [Related]
36. Agreement between a markerless and a marker-based motion capture systems for balance related quantities. Chaumeil A; Lahkar BK; Dumas R; Muller A; Robert T J Biomech; 2024 Mar; 165():112018. PubMed ID: 38412623 [TBL] [Abstract][Full Text] [Related]
37. Comparison of lower limb and trunk kinematics between markerless and marker-based motion capture systems. Perrott MA; Pizzari T; Cook J; McClelland JA Gait Posture; 2017 Feb; 52():57-61. PubMed ID: 27871019 [TBL] [Abstract][Full Text] [Related]
38. Examination of 2D frontal and sagittal markerless motion capture: Implications for markerless applications. Wade L; Needham L; Evans M; McGuigan P; Colyer S; Cosker D; Bilzon J PLoS One; 2023; 18(11):e0293917. PubMed ID: 37943887 [TBL] [Abstract][Full Text] [Related]
39. Verification of gait analysis method fusing camera-based pose estimation and an IMU sensor in various gait conditions. Yamamoto M; Shimatani K; Ishige Y; Takemura H Sci Rep; 2022 Oct; 12(1):17719. PubMed ID: 36271241 [TBL] [Abstract][Full Text] [Related]
40. A Step Forward Understanding Directional Limitations in Markerless Smartphone-Based Gait Analysis: A Pilot Study. Martiš P; Košutzká Z; Kranzl A Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793945 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]