These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 35271167)

  • 21. Fatigue Crack Growth Analysis under Constant Amplitude Loading Using Finite Element Method.
    Alshoaibi AM
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancing aircraft crack repair efficiency through novel optimization of piezoelectric actuator parameters: A design of experiments and adaptive neuro-fuzzy inference system approach.
    Aabid A; Hrairi M; Raheman MA; Ibrahim YE
    Heliyon; 2024 Jun; 10(11):e32166. PubMed ID: 38912447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural Health Monitoring of Fatigue Cracks for Steel Bridges with Wireless Large-Area Strain Sensors.
    Taher SA; Li J; Jeong JH; Laflamme S; Jo H; Bennett C; Collins WN; Downey ARJ
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain.
    Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth.
    Mi B; Michaels JE; Michaels TE
    J Acoust Soc Am; 2006 Jan; 119(1):74-85. PubMed ID: 16454266
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High Cycle Fatigue in the Transmission Electron Microscope.
    Bufford DC; Stauffer D; Mook WM; Syed Asif SA; Boyce BL; Hattar K
    Nano Lett; 2016 Aug; 16(8):4946-53. PubMed ID: 27351706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel ultrasonic non-destructive testing methodology to monitor fatigue crack growth in compact tension specimens.
    Abraham ST; Babu MN; Venkatraman B
    Rev Sci Instrum; 2023 Mar; 94(3):035108. PubMed ID: 37012745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fatigue crack propagation in additively manufactured porous biomaterials.
    Hedayati R; Amin Yavari S; Zadpoor AA
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():457-463. PubMed ID: 28482550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Baseline-free estimation of residual fatigue life using a third order acoustic nonlinear parameter.
    Amura M; Meo M; Amerini F
    J Acoust Soc Am; 2011 Oct; 130(4):1829-37. PubMed ID: 21973336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance Evaluation of a Carbon Nanotube Sensor for Fatigue Crack Monitoring of Metal Structures.
    Ahmed S; Schumacher T; Thostenson ET; McConnell J
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32781517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The fracture mechanics of fatigue crack propagation in compact bone.
    Wright TM; Hayes WC
    J Biomed Mater Res; 1976 Jul; 10(4):637-48. PubMed ID: 947925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of sub-critical fatigue crack propagation in a restorative composite.
    Loughran GM; Versluis A; Douglas WH
    Dent Mater; 2005 Mar; 21(3):252-61. PubMed ID: 15705432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fatigue Crack Propagation of 51CrV4 Steels for Leaf Spring Suspensions of Railway Freight Wagons.
    Gomes VMG; Lesiuk G; Correia JAFO; de Jesus AMP
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Digital Image Correlation (DIC) prototype system for crack propagation monitoring in aircraft assemblies.
    Luan L; Crosbie L; Michel S; Hack E
    Open Res Eur; 2022; 2():82. PubMed ID: 37645345
    [No Abstract]   [Full Text] [Related]  

  • 35. Structure Life Extension towards the Structural Integrity of Sukhoi Su-30MKM.
    Venugopal A; Mohammad R; Koslan MFS; Shafie A; Ali A; Eugene O
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical Simulation of Fatigue Cracking of Diaphragm Notch in Orthotropic Steel Deck Model.
    Zeng Y; He H; Qu Y; Sun X; Tan H; Zhou J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676204
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.
    Patankar R
    Risk Anal; 2003 Oct; 23(5):929-36. PubMed ID: 12969408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Extended Hydro-Mechanical Coupling Model Based on Smoothed Particle Hydrodynamics for Simulating Crack Propagation in Rocks under Hydraulic and Compressive Loads.
    Mu D; Tang A; Qu H; Wang J
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837200
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental and Theoretical Study on the Fatigue Crack Propagation in Stud Shear Connectors.
    Kuang Y; Wang Y; Xiang P; Tao L; Wang K; Fan F; Yang J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational modeling of fatigue crack propagation in butt welded joints subjected to axial load.
    Araque O; Arzola N; VarĂ³n O
    PLoS One; 2019; 14(6):e0218973. PubMed ID: 31247041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.