These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35271175)

  • 1. Identification of Lower-Limb Motor Tasks via Brain-Computer Interfaces: A Topical Overview.
    Asanza V; Peláez E; Loayza F; Lorente-Leyva LL; Peluffo-Ordóñez DH
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Integrated Machine Learning-Based Brain Computer Interface to Classify Diverse Limb Motor Tasks: Explainable Model.
    Hashem HA; Abdulazeem Y; Labib LM; Elhosseini MA; Shehata M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upper Limb Movement Execution Classification using Electroencephalography for Brain Computer Interface.
    Khan SU; Majid M; Linguraru MG; Muhammad Anwar S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Feature Selection and Classification Techniques to Improve the Performance of an Electroencephalography-Based Motor Imagery Brain-Computer Interface System.
    Kabir MH; Akhtar NI; Tasnim N; Miah ASM; Lee HS; Jang SW; Shin J
    Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Compound-Limbs Paradigm: Integrating Upper-Limb Swing Improves Lower-Limb Stepping Intention Decoding From EEG.
    Ma R; Chen YF; Jiang YC; Zhang M
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3823-3834. PubMed ID: 37713229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards Efficient Decoding of Multiple Classes of Motor Imagery Limb Movements Based on EEG Spectral and Time Domain Descriptors.
    Samuel OW; Geng Y; Li X; Li G
    J Med Syst; 2017 Oct; 41(12):194. PubMed ID: 29080913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of EEG measurement of upper limb movement in motor imagery training system.
    Suwannarat A; Pan-Ngum S; Israsena P
    Biomed Eng Online; 2018 Aug; 17(1):103. PubMed ID: 30071853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated deep learning model for motor intention recognition of multi-class EEG Signals in upper limb amputees.
    Idowu OP; Ilesanmi AE; Li X; Samuel OW; Fang P; Li G
    Comput Methods Programs Biomed; 2021 Jul; 206():106121. PubMed ID: 33957375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design a Novel BCI for Neurorehabilitation Using Concurrent LFP and EEG Features: A Case Study.
    Feng Z; Sun Y; Qian L; Qi Y; Wang Y; Guan C; Sun Y
    IEEE Trans Biomed Eng; 2022 May; 69(5):1554-1563. PubMed ID: 34582344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of EEG signals to identify variations in attention during motor task execution.
    Aliakbaryhosseinabadi S; Kamavuako EN; Jiang N; Farina D; Mrachacz-Kersting N
    J Neurosci Methods; 2017 Jun; 284():27-34. PubMed ID: 28431949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subject-specific EEG channel selection using non-negative matrix factorization for lower-limb motor imagery recognition.
    Gurve D; Delisle-Rodriguez D; Romero-Laiseca M; Cardoso V; Loterio F; Bastos T; Krishnan S
    J Neural Eng; 2020 Apr; 17(2):026029. PubMed ID: 31614343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of BCI systems in neurorehabilitation: a scoping review.
    Bamdad M; Zarshenas H; Auais MA
    Disabil Rehabil Assist Technol; 2015; 10(5):355-64. PubMed ID: 25560222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of EEG Signal Motor Imagery Intention Based on Deep Multi-View Feature Learning.
    Xu J; Zheng H; Wang J; Li D; Fang X
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TDLNet: Transfer Data Learning Network for Cross-Subject Classification Based on Multiclass Upper Limb Motor Imagery EEG.
    Bi J; Chu M
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3958-3967. PubMed ID: 37815969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges.
    Padfield N; Zabalza J; Zhao H; Masero V; Ren J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30909489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.
    Siuly ; Li Y; Paul Wen P
    Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals.
    Kim JH; Bießmann F; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):867-76. PubMed ID: 25474811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation.
    Chowdhury A; Raza H; Meena YK; Dutta A; Prasad G
    J Neurosci Methods; 2019 Jan; 312():1-11. PubMed ID: 30452976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.