These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35271188)

  • 21. Development of an evaluation function for eye-hand coordination robotic therapy.
    Pernalete N; Tang F; Chang SM; Cheng FY; Vetter P; Stegemann M; Grantner J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975423. PubMed ID: 22275624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3-D-Gaze-Based Robotic Grasping Through Mimicking Human Visuomotor Function for People With Motion Impairments.
    Li S; Zhang X; Webb JD
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2824-2835. PubMed ID: 28278455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning-Based Motion-Intention Prediction for End-Point Control of Upper-Limb-Assistive Robots.
    Yang S; Garg NP; Gao R; Yuan M; Noronha B; Ang WT; Accoto D
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of Gaze Cues in Interpersonal Motor Coordination: Towards Higher Affiliation in Human-Robot Interaction.
    Khoramshahi M; Shukla A; Raffard S; Bardy BG; Billard A
    PLoS One; 2016; 11(6):e0156874. PubMed ID: 27281341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurocognitive robot-assisted rehabilitation of hand function: a randomized control trial on motor recovery in subacute stroke.
    Ranzani R; Lambercy O; Metzger JC; Califfi A; Regazzi S; Dinacci D; Petrillo C; Rossi P; Conti FM; Gassert R
    J Neuroeng Rehabil; 2020 Aug; 17(1):115. PubMed ID: 32831097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a Planar Haptic Robot With Minimized Impedance.
    Oh K; Rymer WZ; Plenzio I; Mussa-Ivaldi FA; Park S; Choi J
    IEEE Trans Biomed Eng; 2021 May; 68(5):1441-1449. PubMed ID: 33206599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exerciser for rehabilitation of the Arm (ERA): Development and unique features of a 3D end-effector robot.
    Milot MH; Hamel M; Provost PO; Bernier-Ouellet J; Dupuis M; Letourneau D; Briere S; Michaud F
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5833-5836. PubMed ID: 28269581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a haptic interface for motor rehabilitation therapy using augmented reality.
    Vidrios-Serrano C; Bonilla I; Vigueras-Gomez F; Mendoza M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1156-9. PubMed ID: 26736471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exodex Adam-A Reconfigurable Dexterous Haptic User Interface for the Whole Hand.
    Lii NY; Pereira A; Dietl J; Stillfried G; Schmidt A; Beik-Mohammadi H; Baker T; Maier A; Pleintinger B; Chen Z; Elawad A; Mentzer L; Pineault A; Reisich P; Albu-Schäffer A
    Front Robot AI; 2021; 8():716598. PubMed ID: 35309724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gaze-controlled Robot-assisted Painting in Virtual Reality for Upper-limb Rehabilitation.
    Zhang Y; Wang H; Shi BE
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4513-4517. PubMed ID: 34892221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human-like object tracking and gaze estimation with PKD android.
    Wijayasinghe IB; Miller HL; Das SK; Bugnariu NL; Popa DO
    Proc SPIE Int Soc Opt Eng; 2016 May; 9859():. PubMed ID: 29416193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The impact of robot-mediated adaptive I-TRAVLE training on impaired upper limb function in chronic stroke and multiple sclerosis.
    Maris A; Coninx K; Seelen H; Truyens V; De Weyer T; Geers R; Lemmens M; Coolen J; Stupar S; Lamers I; Feys P
    Disabil Rehabil Assist Technol; 2018 Jan; 13(1):1-9. PubMed ID: 28125300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A variable structure pantograph mechanism for comprehensive upper extremity haptic movement training.
    Oblak J; Perry JC; Jung JH; Cikajlo I; Keller T; Matjacić Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5859-62. PubMed ID: 21096924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The "Beam-Me-In Strategy" - remote haptic therapist-patient interaction with two exoskeletons for stroke therapy.
    Baur K; Rohrbach N; Hermsdörfer J; Riener R; Klamroth-Marganska V
    J Neuroeng Rehabil; 2019 Jul; 16(1):85. PubMed ID: 31296226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gaze behavior during visuomotor tracking with complex hand-cursor dynamics.
    Mathew J; Flanagan JR; Danion FR
    J Vis; 2019 Dec; 19(14):24. PubMed ID: 31868897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robot-based tele-echography: the TER system.
    Vilchis A; Masuda K; Troccaz J; Cinquin P
    Stud Health Technol Inform; 2003; 95():212-7. PubMed ID: 14663989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gaze Augmented Hand-Based Kinesthetic Interaction: What You See is What You Feel.
    Li Z; Akkil D; Raisamo R
    IEEE Trans Haptics; 2019; 12(2):114-127. PubMed ID: 30716049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.